Art of Problem Solving

Search results

View (previous 20 | ) (20 | 50 | 100 | 250 | 500)
  • ...ath> intersect diagonal <math>BD</math> at points <math>M</math> and <math>N,</math> respectively. It is known that <math>BM = ND, BC \ne CD.</math> Denote <math>\angle A = 2 \alpha, \angle B = 2 \beta, \angle C = 2 \gamma.</math> ...
    122 KB (21,381 words) - 13:47, 3 August 2025
  • ...ath>G</math>, [[circumcenter]] <math>O</math>, [[nine-point center]] <math>N</math> and [[De Longchamps point | de Longchamps point]] <math>L</math>. I ...ath>, and <math>\triangle CH_AH_B</math> [[concurrence | concur]] at <math>N</math>, the nine-point circle of <math>\triangle ABC</math>. ...
    59 KB (10,203 words) - 03:47, 30 August 2023
  • ...ircle <math>AA'P, \omega </math> is circle <math>BB'P, x_0 = \Omega \cap \omega, x_0 \neq P,</math> ...ath>BB'), \omega </math> is circle tangent to <math>AB, x_0 = \Omega \cap \omega, x_0 \neq B, C </math> is any point of <math>AB, \theta </math> is circle < ...
    28 KB (4,687 words) - 21:27, 19 February 2025
  • Let a circle <math>\omega</math> with diameter <math>PQ</math> and a point <math>A</math> on this dia ...the point <math>A</math> into point <math>O'</math> - the center of <math>\omega'.</math> ...
    43 KB (7,623 words) - 19:07, 24 September 2025
  • ...<math>O_1</math> and <math>O_2</math>, respectively. A third circle <math>\Omega</math> passing through <math>O_1</math> and <math>O_2</math> intersects <ma label("$B$",B,N+1/2*E); ...
    18 KB (2,857 words) - 20:16, 21 September 2025
  • ...gle, <math>a, b, c,</math> be the lengths of <math>BC, AC, AB, \angle A = \alpha, \angle B = \beta, \angle C = \gamma.</math> <math>\cos \omega = \frac {a^2 + b^2 +c^2}{2 \cdot 2S}</math> is the cosine of the Brocard an ...
    38 KB (7,569 words) - 02:35, 16 September 2025
  • ...mmutative. For example <math>1+\omega=\omega</math>, while <math>\omega+1>\omega</math>. ...an it. For example, <math>0,1,2,\dotsb,\omega</math> has order type <math>\omega+1</math>. ...
    5 KB (811 words) - 13:16, 7 June 2020
  • .../3}</math>, then we have <math>C=0</math>, <math>B=r</math>, and <math>A=r\omega.</math> Recall that counter-clockwise rotation in the complex plane by an ...a}(D_1-A)</math>, <math>E_3=A+\omega(D_2-A)</math>, <math>E_4=A+\overline{\omega}(D_2-A)</math>. Thus: ...
    14 KB (2,311 words) - 19:55, 9 June 2025
  • ...triangle ABC (\angle BAC > \angle BCA)</math> and it’s circumcircle <math>\Omega</math> be given. The tangent to <math>\Omega</math> at <math>B</math> meet <math>AC</math> at point <math>M.</math> ...
    17 KB (3,026 words) - 13:33, 17 March 2025
  • ...e incenter) touch the side <math>BC</math> at point <math>M, \angle BAM = \alpha,</math> <math>\angle ABC = 2 \beta, \alpha + 2 \beta = 90^\circ, MI = r(</math> inradius). ...
    18 KB (3,159 words) - 14:32, 16 September 2025
  • ...h> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. ...math>BC</math> lies on <math>\gamma</math>, and <math>BC</math> and <math>\omega</math> are swapped. Thus points <math>F</math> and <math>M</math> map to ea ...
    15 KB (2,516 words) - 16:28, 17 September 2024
  • ...</math>, and the other two excircles are both externally tangent to <math>\omega</math>. Find the minimum possible value of the perimeter of <math>\triangle ...th> (using the exradius formula). However, the sum of the radius of <math>\omega</math> and <math>\frac{rs}{s-b}</math> is equivalent to the distance betwee ...
    25 KB (4,662 words) - 13:32, 26 March 2025
  • Let triangle <math>ABC</math> with circumcircle <math>\Omega</math> and points <math>D</math> and <math>E</math> on the sides <math>AB</ Let <math>K \in \Omega</math> be the midpoint of the arc <math>BC</math> which contain the point < ...
    10 KB (1,745 words) - 11:28, 21 September 2025
  • Consider a polynomial <math>P(x)</math> of degree <math>n</math>, <center><math> P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0</math></center> ...
    4 KB (704 words) - 10:25, 28 July 2025
  • ...is the complex conjugate of omega (note that we may assume that <math>\Im(\omega)>0</math>). ...\mathbb{Z}</math> is equivalent to the desired property. Let <math>\omega=\alpha+i\beta</math>. ...
    8 KB (1,405 words) - 01:47, 26 November 2024
  • ...AB = 3</math>, <math>BC = 4</math>, and <math>CA = 5</math>. Circle <math>\omega</math> intersects <math>\overline{AB}</math> at <math>E</math> and <math>B< ...th>\angle DBE = 90^\circ</math>, <math>DE</math> is the diameter of <math>\omega</math>. Then <math>\angle DFE=\angle DGE=90^\circ</math>. But <math>DF=FE</ ...
    17 KB (2,743 words) - 09:25, 7 November 2025
  • ...sed as the quadratic polynomial <cmath>Area(PQRS) = \alpha \omega - \beta \omega^2.</cmath> ...h> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. ...
    8 KB (1,298 words) - 05:43, 5 February 2025
  • ...rational number. If this number is expressed as a fraction <math>\frac{m}{n}</math> in lowest terms, what is the product <math>mn</math>? label("$D$",D,N); ...
    20 KB (3,497 words) - 14:43, 14 August 2025
  • <cmath>\sum_{n=2}^\infty \frac{1}{n^m (\log{n})^p}</cmath> ...f there is a neighborhood <math>N</math> of <math>p</math> such that <math>N \subseteq E</math> ...
    13 KB (2,473 words) - 20:53, 10 January 2025
  • string[] subscripts={"$1$","$2$"," ","$n$","$1$"}; ...be written in form of a summation <cmath>A = \dfrac{1}{2} \left|\sum_{i=1}^n{(x_{i+1}+x_i)(y_{i+1}-y_i)}\right|</cmath> ...
    8 KB (1,360 words) - 17:09, 28 September 2024
View (previous 20 | ) (20 | 50 | 100 | 250 | 500)