Art of Problem Solving

2019 AIME II Problems

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
2019 AIME II (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, rulers and compasses are permitted. In particular, graph paper, protractors, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Two different points, $C$ and $D$, lie on the same side of line $AB$ so that $\triangle ABC$ and $\triangle BAD$ are congruent with $AB=9,BC=AD=10$, and $CA=DB=17$. The intersection of these two triangular regions has area $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 2

Lily pads $1,2,3,\ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad $1$. From any pad $k$ the frog jumps to either pad $k+1$ or pad $k+2$ chosen randomly with probability $\tfrac{1}{2}$ and independently of other jumps. The probability that the frog visits pad $7$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution

Problem 3

Find the number of $7$-tuples of positive integers $(a,b,c,d,e,f,g)$ that satisfy the following system of equations: \[abc=70\] \[cde=71\] \[efg=72.\]

Solution

Problem 4

A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 5

Four ambassadors and one advisor for each of them are to be seated at a round table with $12$ chairs numbered in order $1$ to $12$. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are $N$ ways for the $8$ people to be seated at the table under these conditions. Find the remainder when $N$ is divided by $1000$.

Solution

Problem 6

In a Martian civilization, all logarithms whose bases are not specified are assumed to be base $b$, for some fixed $b\ge2$. A Martian student writes down \[3\log(\sqrt{x}\log x)=56\] \[\log_{\log x}(x)=54\] and finds that this system of equations has a single real number solution $x>1$. Find $b$.

Solution

Problem 7

Triangle $ABC$ has side lengths $AB=120,BC=220$, and $AC=180$. Lines $\ell_A,\ell_B$, and $\ell_C$ are drawn parallel to $\overline{BC},\overline{AC}$, and $\overline{AB}$, respectively, such that the intersections of $\ell_A,\ell_B$, and $\ell_C$ with the interior of $\triangle ABC$ are segments of lengths $55,45$, and $15$, respectively. Find the perimeter of the triangle whose sides lie on lines $\ell_A,\ell_B$, and $\ell_C$.

Solution

Problem 8

The polynomial $f(z)=az^{2018}+bz^{2017}+cz^{2016}$ has real coefficients not exceeding $2019,$ and $f\left(\tfrac{1+\sqrt3i}{2}\right)=2015+2019\sqrt3i$. Find the remainder when $f(1)$ is divided by $1000$.

Solution

Problem 9

Call a positive integer $n$ $k$-pretty if $n$ has exactly $k$ positive divisors and $n$ is divisible by $k$. For example, $18$ is $6$-pretty. Let $S$ be the sum of the positive integers less than $2019$ that are $20$-pretty. Find $\tfrac{S}{20}$.

Solution

Problem 10

There is a unique angle $\theta$ between $0^\circ$ and $90^\circ$ such that for nonnegative integers $n,$ the value of $\tan(2^n\theta)$ is positive when $n$ is a multiple of $3$, and negative otherwise. The degree measure of $\theta$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution

Problem 11

Triangle $ABC$ has side lengths $AB=7,BC=8,$ and $CA=9.$ Circle $\omega_1$ passes through $B$ and is tangent to line $AC$ at $A.$ Circle $\omega_2$ passes through $C$ and is tangent to line $AB$ at $A.$ Let $K$ be the intersection of circles $\omega_1$ and $\omega_2$ not equal to $A.$ Then $AK=\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Solution

Problem 12

For $n\ge1$ call a finite sequence $(a_1,a_2,\ldots,a_n)$ of positive integers progressive if $a_i<a_{i+1}$ and $a_i$ divides $a_{i+1}$ for $1\le i\le n-1$. Find the number of progressive sequences such that the sum of the terms in the sequence is equal to $360.$

Solution

Problem 13

Regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle of area $1.$ Point $P$ lies inside the circle so that the region bounded by $\overline{PA_1},\overline{PA_2},$ and the minor arc $\widehat{A_1A_2}$ of the circle has area $\tfrac{1}{7},$ while the region bounded by $\overline{PA_3},\overline{PA_4},$ and the minor arc $\widehat{A_3A_4}$ of the circle has area $\tfrac{1}{9}.$ There is a positive integer $n$ such that the area of the region bounded by $\overline{PA_6},\overline{PA_7},$ and the minor arc $\widehat{A_6A_7}$ of the circle is equal to $\tfrac{1}{8}-\tfrac{\sqrt2}{n}.$ Find $n.$

Solution

Problem 14

Find the sum of all positive integers $n$ such that, given an unlimited supply of stamps of denominations $5,n,$ and $n+1$ cents, $91$ cents is the greatest postage that cannot be formed.

Solution

Problem 15

In acute triangle $ABC,$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

Solution

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
2019 AIME I Problems
Followed by
2020 AIME I Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.