Art of Problem Solving

2025 AMC 10A Problems/Problem 23

Problem 23

Triangle $\triangle ABC$ has side lengths $AB = 80$, $BC = 45$, and $AC = 75$. The bisector of $\angle B$ and the altitude to side $\overline{AB}$ intersect at point $P$. What is $BP$?

$\textbf{(A)}~18\qquad\textbf{(B)}~19\qquad\textbf{(C)}~20\qquad\textbf{(D)}~21\qquad\textbf{(E)}~22$

Diagram

[asy] import olympiad; size(350);  pair A = (0,0); pair B = (80,0); pair C = (62.5,41.4578098794425); pair H = (62.5,0);  // Angle bisector point D on AC: AD : DC = 48 : 27 pair D = (40.0,26.5329983228432); path BD = B--D; pair P = intersectionpoint(BD,H--C);  // main triangle draw(A--B--C--cycle, linewidth(1)); draw(C--H); draw(B--D);  // right-angle mark at H draw((H+(1.8,0))--(H+(1.8,1.8))--(H+(0,1.8)), linewidth(0.8));  dot(A); label("$A$",A,SW); dot(B); label("$B$",B,SE); dot(C); label("$C$",C,NE); dot(H); label("$H$",H,S); dot(D); label("$D$",D,NNW); dot(P); label("$P$",P,ENE);  // side labels (closer, larger) label("$80$", midpoint(A--B), S+1.5*dir(270), fontsize(11)); label("$75$", midpoint(A--C) + (-2,2), fontsize(11)); label("$45$", midpoint(B--C) + (2,2), fontsize(11));  xlimits(-5,85); ylimits(-5,50); currentpicture.fit(); [/asy] ~Avs2010

Solution 1(Takes some time)

Let $CH$ be the altitude from vertex $C$ to the side $\overline{AB}$, so $H$ is a point on $AB$ and $\angle CHB = 90^\circ$. Let $BD$ be the angle bisector of $\angle B$, where $D$ is on $AC$.

Point $P$ is the intersection of the altitude $CH$ and the angle bisector $BD$.

We want to find the length of $BP$.

Consider the triangle $\triangle BPH$. Since $P$ lies on the altitude $CH$, the angle $\angle BHP$ is the same as $\angle CHB$, which is $90^\circ$. Therefore, $\triangle BPH$ is a right-angled triangle.

In the right $\triangle BPH$, the angle $\angle PBH$ is the angle formed by the angle bisector $BD$ and the side $AB$. By definition of the angle bisector, $\angle PBH = \angle ABC / 2 = B/2$.

Using trigonometry in the right $\triangle BPH$, we have:

\[\cos(\angle PBH) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BH}{BP}\]

\[\cos(B/2) = \frac{BH}{BP}\]

Rearranging this gives:

\[BP = \frac{BH}{\cos(B/2)}\]

To solve the problem, we need to find the lengths of $BH$ and the value of $\cos(B/2)$.

1. Find the length of $BH$ is the projection of side $BC$ onto $AB$. In the right-angled triangle $\triangle CHB$, $BH = BC \cdot \cos(B) = a \cdot \cos(B)$. We can find $\cos(B)$ using the Law of Cosines on $\triangle ABC$:

\[b^2 = a^2 + c^2 - 2ac \cos(B)\]

\[AC^2 = BC^2 + AB^2 - 2(BC)(AB) \cos(B)\]

\[75^2 = 45^2 + 80^2 - 2(45)(80) \cos(B)\]

\[5625 = 2025 + 6400 - 7200 \cos(B)\]

\[5625 = 8425 - 7200 \cos(B)\]

\[7200 \cos(B) = 8425 - 5625\]

\[7200 \cos(B) = 2800\]

\[\cos(B) = \frac{2800}{7200} = \frac{28}{72} = \frac{7}{18}\]

Now, we can find $BH$:

\[BH = a \cdot \cos(B) = 45 \cdot \left(\frac{7}{18}\right) = \frac{45 \cdot 7}{18} = \frac{(5 \cdot 9) \cdot 7}{2 \cdot 9} = \frac{35}{2}\]

2. Find the value of $\cos(B/2)$} We use the half-angle identity for cosine: $\cos(B) = 2\cos^2(B/2) - 1$. We know $\cos(B) = 7/18$:

\[\frac{7}{18} = 2\cos^2(B/2) - 1\]

\[\frac{7}{18} + 1 = 2\cos^2(B/2)\]

\[\frac{25}{18} = 2\cos^2(B/2)\]

\[\cos^2(B/2) = \frac{25}{36}\]

\[\cos(B/2) = \sqrt{\frac{25}{36}} = \frac{5}{6}\]

(We take the positive root because $B/2$ must be an acute angle).

Now we substitute our values for $BH$ and $\cos(B/2)$ into the equation for $BP$:

\[BP = \frac{BH}{\cos(B/2)} = \frac{35/2}{5/6}\]

\[BP = \frac{35}{2} \cdot \frac{6}{5} = \frac{35 \cdot 6}{2 \cdot 5} = \frac{210}{10} = 21\]

The length of $BP$ is 21. ~Jonathanmo

Solution 2

Let $D$ be the foot of the altitude from $C$ to $AB$. We wish to find $BD$ and $DP$.

First, notice that $AD^2 + CD^2 = AC^2$ and $BD^2+CD^2=BC^2$ by the Pythagorean Theorem. Subtracting the second equation from the first, we get \[AD^2-BD^2=(AD-BD)(AD+BD)=AC^2-BC^2\] Plugging in values and simplifying, we see that $AD-BD =45$. Knowing that $AD+BD=80$, we can solve the system of equations to get $AD = \frac{125}{2}$, $BD=\frac{35}{2}$. Plug those values back into their original equations and we find that $CD = \frac{25}{2}\sqrt{11}$. To find $DP$, we use the Angle Bisector Theorem. The ratio between $BD$ and $BC$ is $\frac{7}{18}$, so $DP = \frac{7}{25} \cdot CD = \frac{7}{2}\sqrt{11}$. Finally, we use the Pythagorean Theorem to get \[BD^2+DP^2=(\frac{35}{2})^2+(\frac{7}{2}\sqrt{11})^2=\frac{1764}{4}=441=BP^2\] so $BP=\boxed{\textbf{(D)}~21}$.

~ChickensEatGrass

Solution 3 (Heron's Formula)

We are asked to find \(BP\) in the given triangle configuration.

Let \(D\) be the intersection of the altitude from \(C\) to \(AB\). To simplify calculations, we divide all side lengths by \(5\), and multiply by \(5\) again at the end.

First, we use Heron’s Formula, \(\sqrt{s(s-a)(s-b)(s-c)}\), to find the area. Let \([ABC]\) denote the area of \(\triangle ABC\). By Heron’s Formula, \[[ABC] = \sqrt{20 \cdot 5 \cdot 4 \cdot 11} = 20\sqrt{11}.\]

Next, we find the altitude \(CD\) using the formula for the area of a triangle, \(\tfrac{1}{2}bh = \text{area}\): \[\frac{1}{2}(16)(CD) = 20\sqrt{11} \quad \Rightarrow \quad CD = \frac{5\sqrt{11}}{2}.\]

We can use the Pythagorean Theorem in \(\triangle CDB\) to find \(DB\): \[DB^2 + \frac{25 \cdot 11}{4} = 81.\] \[4DB^2 + 275 = 324 \quad \Rightarrow \quad DB^2 = \frac{49}{4}.\] Thus, \(DB = \frac{7}{2}.\)

Next, we use the Angle Bisector Theorem to find \(PD\). Let \(x = PC\) and \(y = PD\). Since \(x + y = \frac{5\sqrt{11}}{2}\), we have \(x = \frac{5\sqrt{11}}{2} - y.\)

From the given ratio, \[\frac{9}{x} = \frac{7}{2y} \quad \Rightarrow \quad 18y = 7x.\] Substituting \(x = \frac{5\sqrt{11}}{2} - y\), \[18y = 7\left(\frac{5\sqrt{11}}{2} - y\right) \quad \Rightarrow \quad 25y = \frac{35\sqrt{11}}{2}.\] Hence, \(y = \frac{7\sqrt{11}}{10}.\)

Now, using the Pythagorean Theorem again to find \(BP\): \[\frac{49 \cdot 11}{100} + \frac{49}{4} = BP^2.\] \[100BP^2 = 49(11 + 25) = 49 \cdot 36 \quad \Rightarrow \quad BP = \frac{42}{10} = \frac{21}{5}.\]

Finally, multiplying the side lengths by \(5\) again gives \(BP = 21\), or $\boxed{\textbf{(D) 21}}$.

~Voidling

Solution 4

The semiperimeter is $\frac{75+45+80}{2}=100.$ Heron's formula for area gives $\sqrt{100\cdot20\cdot25\cdot55}=\left[ABC\right]=500\sqrt{11}\Rightarrow CH=\frac{25\sqrt{11}}{2}.$ Pythagorean theorem gives \[BH^2=BC^2-CH^2=5^2\left(\frac{4\cdot 9^2-25\cdot 11}{4}\right)\Rightarrow BH=35/2.\]

Angle bisector theorem on $\overline{CH}$ gives $\frac{PH}{35/2}=\frac{PC}{45},$ giving $PH=\frac7{18}\cdot PC\Rightarrow PH=\frac7{25}\cdot CH.$

Angle bisector theorem on $\overline{AC}$ gives $AD=48$ and $DC=27.$ Then, notice that $\frac{27}{45}=\frac{45}{75},$ as well as the fact that $\angle DCB=\angle ACB$ is shared, so $\triangle ABC\sim\triangle BDC$ by SAS. Therefore, $\angle DAB=\angle DBA.$

Now we look for another similar pair of triangles, $\triangle CHA\sim\triangle PHB$ by $AA.$ Hence, \[\frac{75}{CH}=\frac{BP}{PH}=\frac{BP}{\frac{7}{25}\cdot CH}\Rightarrow \frac{25}{7}\cdot BP=75\Rightarrow BP=\boxed{21}.\]

-NinJaPro

Solution 5

By angle bisector theorem, we find $AD=48$ and $DC=27.$

Let $BH=x,$ $CH=h,$ and $HA=16-x.$ We have

\[x^2 + h^2 = 45^2 = 2025\] and \[(16-x)^2 +h^2 = 256 - 32x +x^2 + h^2 = 75^2 = 5625\]

by Pythagorean Theorem. After some algebra, we find $x = \frac{35}{2},$ meaning

\[BH = \frac{35}{2}, HA = \frac{125}{2}.\]

By Menelaus' Theorem, \[\frac{BH}{HA} \cdot \frac{AC}{CD} \cdot \frac{DP}{PB} = 1.\]

We have $\frac{\frac{35}{2}}{\frac{125}{2}} \cdot \frac{75}{27} \cdot \frac{DP}{PB} = 1,$ meaning $\frac{DP}{PB} = \frac{9}{7},$ or \[BP = BD \cdot \frac{7}{16}.\]

Stewart's Theorem on triangle $ABC$ with diagonal $BD$ gives the equation

\[27 \cdot 75 \cdot 48 + d^2 \cdot 75 = 45^2 \cdot 48 + 80^2 \cdot 27.\]

This gives $d = 48$ after some algebra.

Now, $BP = 48 \cdot \frac{7}{16} = \boxed{21}.$

-Jayjay2010

Solution 6

Use the compass and the ruler to construct the diagram accurately. I used $5:1$ cm. Use the ruler to measure the distance between $B$ and $P$ for $BP=\boxed{\textbf{(D)}~21}$.

~dareckolo and friends ~Ben Dong (typo fix, originally said distance between $B$ and $C$)

Video Solution (In 3 Mins)

https://youtu.be/nAimLnvSTwQ?si=cRm14r4GyfgxRq5L ~ Pi Academy

See Also

2025 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.