2025 AMC 12A Problems/Problem 25
Polynomials
and
each have degree
and leading coefficient
, and their roots are all elements of
. The function
has the property that there exist real numbers
such that the set of all real numbers
such that
consists of the closed interval
together with the open interval
. How many functions
are possible?
Solution 1 by Victor Zhang
\documentclass[12pt]{article} \usepackage{amsmath, amssymb, amsthm} \usepackage{enumitem} \begin{document} \section*{Solution}
\subsection*{Step 1: Sign chart analysis}
From the structure
on
and
elsewhere,
we deduce:
\begin{itemize}
\item
and
are zeros of
(since we transition from
to
at
and from
to
at
).
\item
and
are poles or holes of
(since on
we have
, at
and
the sign is negative, and immediately outside the
interval
).
\end{itemize}
Thus the sign pattern is:\\
\section*{Step 2: Structure of \( f(x) \)}
According to the given conditions, \( f(x) \) can be expressed as:
\[
f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}.
\]
Combining the sign analysis from Step 1, we can rewrite this expression as:
\[
f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}.
\]
Furthermore, we can break down the expression into two parts:
\[
f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}.
\]
Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have:
\[
f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}.
\]
\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)}
\begin{itemize}
\item By analyzing the sign changes of \( f_1(x) \), we find that it completely
satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \)
must be positive on every interval; otherwise, it would introduce an extra sign
change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \),
the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \(
q_3 \). Let \( p_3 = q_3 = t \).
\item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it
would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of
the closed interval \( [a, b] \) and the open interval \( (c, d) \).
\item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that
point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which
contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0
\). On a closed interval, the function must be defined at the endpoints.
\end{itemize}
In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval
outside of \( [a,b] \cup (c,d) \).
\section*{Step 4: The Possible Values of
,
,
,
, and
}
\begin{itemize}
\item Given
and the condition that
, the number of ways to choose
from
is:
\[
\binom{5}{4} = 5
\]
The five cases are:
;
;
;
;
\item \textbf{Case 1:}
,
can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}
\]
\item \textbf{Case 2:}
,
can be 3 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)}
\]
\item \textbf{Case 3:}
,
can be 3, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 4:}
,
can be 4 or 5.\\
This gives us 2 combinations:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\item \textbf{Case 5:}
,
can be 1, 4, or 5.\\
This gives us 3 combinations:
\[
f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\]
\[
f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)}
\]
\end{itemize}
\section*{Step 5: Final Answer}
Summing up all possible cases from Step 4 gives us
possible functions
.
Thus the answer is
.
\end{document}
\section*{Step 4: The possible of a,b,c,d, and t }
\begin{itemize}
\item According to given
and \( [a,b] \cup (c,d) \), the ways
of choose a,b,c,d from {1,2,3,4,5}:
List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup
(4,5); [2,3]\cup (4,5)$\item Case 1:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,4)$, t can be 3,4, or 5.\\
Give us 3 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}.
\]
\item Case 2:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,5)$, t can be 3, or 5.\\
Give us 2 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5
)}
\]
\item Case 3:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (4,5)$, t can be 3,4, or 5.\\
Give us 3 combnation:
\[
f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4
)}
\]
\[
f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}.
\]
\item Case 4:$ (Error compiling LaTeX. Unknown error_msg)[1,3]\cup (4,5)$, t can be 4, or 5.\\
Give us 2 combnation:
\[
f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}
\] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5 )} \] \item Case 5:$ (Error compiling LaTeX. Unknown error_msg)[2,3]\cup (4,5)$, t can be 1,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \]
\section*{Step 5: final answer } \Sum up all possible cases of step 4 give us 13 possible functions f(x).
Thus the answer is$ (Error compiling LaTeX. Unknown error_msg)\boxed{E}$. \end{document}