Art of Problem Solving

2025 AMC 12A Problems/Problem 25

Revision as of 02:25, 7 November 2025 by Tiankaizhang (talk | contribs) (Undo revision 266767 by Tiankaizhang (talk))

Polynomials $P(x)$ and $Q(x)$ each have degree $3$ and leading coefficient $1$, and their roots are all elements of $\{1,2,3,4,5\}$. The function $f(x) = \tfrac{P(x)}{Q(x)}$ has the property that there exist real numbers $a < b < c < d$ such that the set of all real numbers $x$ such that $f(x) \leq 0$ consists of the closed interval $[a,b]$ together with the open interval $(c,d)$. How many functions $f(x)$ are possible?

Solution 1 by Victor Zhang

\documentclass[12pt]{article} \usepackage{amsmath, amssymb, amsthm} \usepackage{enumitem} \begin{document} \section*{Solution}

\subsection*{Step 1: Sign chart analysis} From the structure $f(x) \le 0$ on $[a,b] \cup (c,d)$ and $f(x) &gt; 0$ elsewhere, we deduce: \begin{itemize} \item $a$ and $b$ are zeros of $f$ (since we transition from $f &gt; 0$ to $f \le 0$ at $a$ and from $f \le 0$ to $f &gt; 0$ at $b$). \item $c$ and $d$ are poles or holes of $f$ (since on $(c,d)$ we have $f \le 0$, at $c^+$ and $d^-$ the sign is negative, and immediately outside the interval $f &gt; 0$). \end{itemize} Thus the sign pattern is:\\ $\textstyle \begin{array}{cccccccccc} &amp; (-\infty, a) &amp; a &amp; (a,b) &amp; b &amp; (b,c) &amp; c &amp; (c,d) &amp; d &amp; (d,\infty) \\ f(x) &amp; + &amp; 0 &amp; - &amp; 0 &amp; + &amp; \text{pole} &amp; - &amp; \text{pole} &amp; + \end{array}$ \section*{Step 2: Structure of \( f(x) \)} According to the given conditions, \( f(x) \) can be expressed as: \[ f(x) = \frac{(x-p_1)(x-p_2)(x-p_3)}{(x-q_1)(x-q_2)(x-q_3)}. \] Combining the sign analysis from Step 1, we can rewrite this expression as: \[ f(x) = \frac{(x-a)(x-b)(x-p_3)}{(x-c)(x-d)(x-q_3)}. \] Furthermore, we can break down the expression into two parts: \[ f(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)} \cdot \frac{x-p_3}{x-q_3}. \] Defining \( f(x) = f_1(x) \cdot f_2(x) \), we have: \[ f_1(x) = \frac{(x-a)(x-b)}{(x-c)(x-d)}, \quad f_2(x) = \frac{x-p_3}{x-q_3}. \]

\section*{Step 3: Analysis of \( p_3 \) and \( q_3 \)} \begin{itemize} \item By analyzing the sign changes of \( f_1(x) \), we find that it completely satisfies the sign chart for \( f(x) \). We can therefore conclude that \( f_2(x) \) must be positive on every interval; otherwise, it would introduce an extra sign change. This forces the condition \( p_3 = q_3 \), because if \( p_3 \neq q_3 \), the factor \( f_2(x) \) would be negative on the interval between \( p_3 \) and \( q_3 \). Let \( p_3 = q_3 = t \). \item Furthermore, \( t \) cannot lie within \( [a,b] \cup (c,d) \). If it did, it would contradict the given condition that the set \( \{x : f(x) \le 0\} \) consists of the closed interval \( [a, b] \) and the open interval \( (c, d) \). \item Additionally, \( t \) cannot be equal to \( a \) or \( b \). If it were, that point would be a hole (a point of discontinuity) in the graph of \( f(x) \), which contradicts the fact that \( [a, b] \) is a \textbf{closed} interval where \( f(x) \le 0 \). On a closed interval, the function must be defined at the endpoints. \end{itemize} In conclusion, \( t \) can only be equal to \( c \) or \( d \), or lie in an interval outside of \( [a,b] \cup (c,d) \). \section*{Step 4: The Possible Values of $a$, $b$, $c$, $d$, and $t$} \begin{itemize} \item Given $a &lt; b &lt; c &lt; d$ and the condition that $\{x: f(x) \leq 0\} = [a,b] \cup (c,d)$, the number of ways to choose $a,b,c,d$ from $\{1,2,3,4,5\}$ is: \[ \binom{5}{4} = 5 \] The five cases are: $[1,2]\cup (3,4)$; $[1,2]\cup (3,5)$; $[1,2]\cup (4,5)$; $[1,3]\cup (4,5)$; $[2,3]\cup (4,5)$ \item \textbf{Case 1:} $[1,2]\cup (3,4)$, $t$ can be 3, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)} \] \item \textbf{Case 2:} $[1,2]\cup (3,5)$, $t$ can be 3 or 5.\\

This gives us 2 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-5)(x-5)} \] \item \textbf{Case 3:} $[1,2]\cup (4,5)$, $t$ can be 3, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)} \] \item \textbf{Case 4:} $[1,3]\cup (4,5)$, $t$ can be 4 or 5.\\ This gives us 2 combinations: \[ f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \] \item \textbf{Case 5:} $[2,3]\cup (4,5)$, $t$ can be 1, 4, or 5.\\ This gives us 3 combinations: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \] \end{itemize} \section*{Step 5: Final Answer} Summing up all possible cases from Step 4 gives us $3 + 2 + 3 + 2 + 3 = 13$ possible functions $f(x)$. Thus the answer is $\boxed{E}$. \end{document}

\section*{Step 4: The possible of a,b,c,d, and t } \begin{itemize} \item According to given $a &lt; b &lt; c &lt; d$ and \( [a,b] \cup (c,d) \), the ways of choose a,b,c,d from {1,2,3,4,5}: \[\binom{5}{4}=5\] List 5 cases as:\\$[1,2]\cup (3,4); [1,2]\cup (3,5); [1,2]\cup (4,5); [1,3]\cup (4,5); [2,3]\cup (4,5)$\item Case 1:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,4)$, t can be 3,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-4)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-3)(x-4)(x-4 )} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5)}. \] \item Case 2:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (3,5)$, t can be 3, or 5.\\ Give us 2 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-3)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-3)(x-4)(x-5 )} \] \item Case 3:$ (Error compiling LaTeX. Unknown error_msg)[1,2]\cup (4,5)$, t can be 3,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-3)} \] \[ f(x) = \frac{(x-1)(x-2)(x-4)}{(x-4)(x-5)(x-4 )} \] \[ f(x) = \frac{(x-1)(x-2)(x-5)}{(x-4)(x-5)(x-5)}. \] \item Case 4:$ (Error compiling LaTeX. Unknown error_msg)[1,3]\cup (4,5)$, t can be 4, or 5.\\ Give us 2 combnation: \[ f(x) = \frac{(x-1)(x-3)(x-4)}{(x-4)(x-5)(x-4)}

\] \[ f(x) = \frac{(x-1)(x-3)(x-5)}{(x-4)(x-5)(x-5 )} \] \item Case 5:$ (Error compiling LaTeX. Unknown error_msg)[2,3]\cup (4,5)$, t can be 1,4, or 5.\\ Give us 3 combnation: \[ f(x) = \frac{(x-2)(x-3)(x-1)}{(x-4)(x-5)(x-1)} \] \[ f(x) = \frac{(x-2)(x-3)(x-4)}{(x-4)(x-5)(x-4)} \] \[ f(x) = \frac{(x-2)(x-3)(x-5)}{(x-4)(x-5)(x-5)} \]

\section*{Step 5: final answer } \Sum up all possible cases of step 4 give us 13 possible functions f(x).

Thus the answer is$ (Error compiling LaTeX. Unknown error_msg)\boxed{E}$. \end{document}

Video Solution 1 by OmegaLearn

https://youtu.be/SPbTyq3Dz_0