Art of Problem Solving

2025 AMC 10A Problems/Problem 20

Revision as of 15:22, 6 November 2025 by Nioronean (talk | contribs) (Solution 1)

A silo (right circular cylinder) with diameter 20 meters stands in a field. MacDonald is located 20 meters west and 15 meters south of the center of the silo. McGregor is located 20 meters east and $g > 0$ meters south of the center of the silo. The light of sight between MacDonald and McGregor is tangent to the silo. The value of g can be written as $\frac{a\sqrt{b}-c}{d}$, where $a,b,c,$ and $d$ are positive integers, $b$ is not divisible by the square of any prime, and $d$ is relatively prime to the greatest common divisor of $a$ and $c$. What is $a+b+c+d$?

$\textbf{(A) } 118 \qquad\textbf{(B) } 119 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 121 \qquad\textbf{(E) } 122$

Solution 1

Let the silo center be $O$, let the point MacDnoald is situated at be $A$, and let the point $20$ meters west of the silo center be $B$. $ABO$ is then a right triangle with side lengths $15, 20,$ and $25$.

Let the point $20$ meters east of the silo center be $C$, and let the point McGregor is at be $D$ with $CD=g>0$. Also let $AD$ be tangent to circle $O$ at $T$.

Extend $BC$ and $AD$ to meet at point $F$. This creates $3$ similar triangles, $ABF\sim DCF \sim OEF$. Let the distance between point $C$ and $F$ be $x$. The similarity ratio between triangles $ABF$ and $DCF$ is then $\frac{longer\;leg}{shorter\;leg} = \frac{40+x}{15} = \frac{x}{g}$

This is currently unsolvable so we bring it triangle $OEF$. The hypotenuse of triangle $OEF$ is $OF=20+x$ and its shorter leg is the radius of the silo $=10$. We can then establish a second similarity relationship between triangles $OEF$ and $ABF$ with $\frac{shorter\; leg}{hypotenuse}=\frac{10}{20+x}=\frac{15}{hypABF}$