Art of Problem Solving

2025 AMC 12A Problems/Problem 12

Revision as of 14:36, 6 November 2025 by Lprado (talk | contribs)

Problem

Solution 1

We will need to determine the sum of the reciprocals of the roots. To find the sum of the reciprocals of the roots $p,q$ of the quadratic $ax^2+bx+c$, we use Vieta's formulas. Recall that $p+q = -b/a$ and $pq = c/a$. Therefore, \[\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq} = \frac{-b/a}{c/a} = \frac{-b}{c},\] which doesn't depend on $a$.

The sum of the reciprocals of the roots of the quadratic $x^2-4x-3$ is $\frac{-(-4)}{-3} = -4/3.$ The same is true for every quadratic in the form $ax^2-4x-3$. The sum of all the reciprocals of the roots of $ax^2+bx+c$ is $2025 \cdot \left(-\frac{4}{3}\right).$

Because we have $2025$ quadratics, there are $2 \cdot 2025 = 4050$ total roots. Our answer is \[\frac{1}{\frac{1}{4050}\cdot \frac{-4\cdot 2025}{3}} = \boxed{-\frac{3}{2}}.\]

~lprado