2023 USAMO Problems/Problem 1
In an acute triangle
, let
be the midpoint of
. Let
be the foot of the perpendicular from
to
. Suppose that the circumcircle of triangle
intersects line
at two distinct points
and
. Let
be the midpoint of
. Prove that
.
Solution 1
Let
be the foot from
to
. By definition,
. Thus,
, and
.
From this, we have
, as
. Thus,
is also the midpoint of
.
Now,
iff
lies on the perpendicular bisector of
. As
lies on the perpendicular bisector of
, which is also the perpendicular bisector of
(as
is also the midpoint of
), we are done.
~ Martin2001, ApraTrip
See also
| 2023 USAMO (Problems • Resources) | ||
| Preceded by First Problem |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||