1971 IMO Problems/Problem 5
Prove that for every natural number
; there exists a finite set
of points in a plane with the following property: For every point
in
; there are exactly
points in
which are at unit distance from
.
Prove that for every natural number
; there exists a finite set
of points in a plane with the following property: For every point
in
; there are exactly
points in
which are at unit distance from
.
Something appears to not have loaded correctly.