1954 AHSME Problems/Problem 37
Problem 37
Given
with
bisecting
,
extended to
and
a right angle, then:
Partial Solution
path anglemark2(pair A, pair B, pair C, real t=8, bool flip=false)
{
pair M,N;
path mark;
M=t*0.03*unit(A-B)+B;
N=t*0.03*unit(C-B)+B;
if(flip)
mark=Arc(B,t*0.03,degrees(C-B)-360,degrees(A-B));
else
mark=Arc(B,t*0.03,degrees(A-B),degrees(C-B));
return mark;
}
unitsize(1.5cm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
pair P=(0,0), R=(3,2), Q=(4,0);
pair S0=bisectorpoint(P,R,Q);
pair Sp=extension(P,Q,S0,R);
pair D0=bisectorpoint(R,Sp), Np=midpoint(R--Sp);
pair D=extension(Np,D0,P,Q), M=extension(Np,D0,P,R);
draw(P--R--Q);
draw(R--Sp);
draw(P--D--M);
pair pI=extension(D,M,R,Q);
void label("$O$",pI,f);
draw(anglemark2(Sp,P,R,17));
label("$p$",P+(0.35,0.1));
draw(anglemark2(R,Q,P,11));
label("$q$",Q+(-0.17,0.1));
draw(anglemark2(R,Np,D,8,true));
label("$n$",Np+(+0.12,0.07));
draw(anglemark2(R,M,D,13,true));
label("$m$",M+(+0.25,0.03));
draw(anglemark2(M,D,P,29));
label("$d$",D+(-0.75,0.095));
pen f=fontsize(10pt);
label("$R$",R,N,f);
label("$M$",M+(-.067,.067),f);
label("$N$",Np+(-.07,.14),f);
label("$P$",P,S,f);
label("$S$",Sp,S,f);
label("$Q$",Q,S,f);
label("$D$",D,S,f); (Error making remote request. Unknown error_msg)
Looking at triangle PRQ, we have
and from the given statement
, so looking at triangle