Art of Problem Solving

2025 AMC 12A Problems/Problem 16

Revision as of 21:20, 11 November 2025 by Imosilver (talk | contribs) (Add solution using Pythagora's and double angle identity)
The following problem is from both the 2025 AMC 10A #23 and 2025 AMC 12A #16, so both problems redirect to this page.

Problem

Triangle $\triangle ABC$ has side lengths $AB = 80$, $BC = 45$, and $AC = 75$. The bisector of $\angle B$ and the altitude to side $\overline{AB}$ intersect at point $P$. What is $BP$?

$\textbf{(A)}~18\qquad\textbf{(B)}~19\qquad\textbf{(C)}~20\qquad\textbf{(D)}~21\qquad\textbf{(E)}~22$

Solution 1

Let $CD \perp AB$ with foot $D$. Right triangles $ACD$ and $BCD$ give $AC^2 = AD^2+CD^2$, $BC^2 = BD^2+CD^2$, $AC^2-BC^2 = AD^2-BD^2 =(AD-BD)(AD+BD)$.

Since $AD+BD = AB = 80$ and $AC^2-BC^2 = 75^2-45^2 = 3600$, we get the equation $3600 = 80(AD-BD)$. This equation simplifies to $45 = AD - BD$. We can solve the system of equations $AD + BD = 80$ and $AD - BD = 45$ easily via elimination, and we get $AD = \frac{125}{2}$, $BD = \frac{35}{2}$. $CD^2 = AC^2-AD^2 = 75^2-\left(\frac{125}{2}\right)^2 = \frac{6875}{4}$, $CD = \frac{25\sqrt{11}}{2}$.

By Angle Bisector Theorem, $\frac{DP}{PC} = \frac{DB}{BC} = \frac{\frac{35}{2}}{45} = \frac{7}{18}$, $PC = CD-DP$ thus, $18DP = 7(CD-DP)$, $25DP = 7CD$, $DP = \left(\frac{7}{25}\right)CD = \left(\frac{7}{25}\right)\left(\frac{25\sqrt{11}}{2}\right) = \frac{7\sqrt{11}}{2}$. $BP^2 = BD^2+DP^2 = \left(\frac{35}{2}\right)^2+\left(\frac{7\sqrt{11}}{2}\right)^2 = \frac{1225}{4}+\frac{49(11)}{4} = \frac{1764}{4} = 441$, thus $BP = \boxed{\text{(D) }21}.$

~pigwash ~aldzandrtc(fixed logical jump)

Solution 2 (Law of Cosines)

Scale this down to a $9-15-16$ triangle (we will multiply the result by $5$ in the end). Note that $9^2+16^2-18*16*\cos(\angle B) = 15^2$, so $112 = 18 * 16 * \cos(\angle B)$, which simplifies to $\frac{7}{18} = \cos(\angle B)$. Then $\cos(\frac{\angle B}{2}) = \sqrt{\frac{1+\frac{7}{18}}{2}} = \sqrt{\frac{25}{36}} = \frac{5}{6}$ (positive root since the angle is acute). Therefore, we have $\frac{BD}{BP} = \frac{5}{6}$, assuming that $D$ is the foot of the altitude. There are many ways to proceed from here to find $BD$. Note that by Heron's formula, the area of the scaled-down triangle is $\sqrt{(20)(4)(5)(11)} = 20\sqrt{11}$. Therefore, $CD = \frac{5}{2}\sqrt{11}$. Using Pythagorean Theorem, we get $BD= \sqrt{81-\frac{25 \cdot 11}{4}} = \sqrt{\frac{324-275}{4}} = \frac{7}{2}$. Therefore, we get $\frac{\frac{7}{2}}{BP} = \frac{5}{6}$, so $BP = \frac{21}{5}$, and we scale up by $5$ to get $\boxed{21}$. ~ScoutViolet

Solution 3 (Stewarts)

Let the foot of the altitude coming from $C$ on segment $AB$ be $D$. Using the fact that $CD$ is a common leg in right triangles $\triangle CDB$ and $\triangle CDA$, we have \[45^2 - BD^2 = 75^2 - (80-BD)^2.\] Expanding gives \[45^2=75^2-80^2+160BD,\] so $BD=\frac{35}{2}.$ Let the foot of the angle bisector from $B$ to $AC$ be point $E$. Since $BE$ is the angle bisector of $\angle CBA$, we can use the angle bisector theorem. This gives \[\frac{45}{CE}=\frac{80}{75-CE},\] so $CE=27$ and $AE=75-27=48$. Now we can use Stewart’s Theorem to find $\overline{BE}$. We have \[(48)(45)^2+(27)(80)^2=(27)(48)(75)+75BE^2.\] To simplify this expression, just divide by the greatest common divisor and solve from there. In the end, we get $BE=48$. Let $BP=x$, so $PE=48-x$. Draw the altitude from $E$ down to $AB$. Let the foot of this altitude be $F$. Since $EF || CD$, we have $\triangle AFE \sim \triangle ADC$. Hence, we can write the equation \[\frac{48}{75}=\frac{AF}{\frac{125}{2}}.\] Solving gives $AF=40$, so $FD=\frac{125}{2}-40=\frac{45}{2}$. Since $PD || EF$, we also have $\triangle BDP \sim \triangle BFE$, so we have \[\frac{x}{48}=\frac{\frac{35}{2}}{40}.\] Solving for $x$ gives $\boxed{x=21}$ or $\boxed{\text{D}}.$

~evanhliu2009

Solution 4 (Rulerbash)

Preface: When we have a problem as such, involving a simple diagram with minimal instructions, I use a method I named "rulerbash". Rulerbash should only be used in specific cases and as a last resort, mainly in the event of a time crunch or a difficult problem.

Start with the longest side, drawing a line with a length of $8\,\text{cm}$ ($AB$). Then, using a compass, draw 2 circles centered around points $A$ and $B$, $7.5\,\text{cm}$ and $4.5\,\text{cm}$ radiuses respectfully. At the point of intersection of these 2 circles, we have point $C$, completing a perfectly scaled drawing of $\triangle ABC$. (Note the circles are not necessary with a bit of trial and error with the side lengths, they simply offer a way to get it done first try).

[asy] unitsize(0.25cm);  pair A=(0,0), B=(8,0); path cA=circle(A,7.5), cB=circle(B,4.5); pair C=intersectionpoint(cA,cB);  draw(A--B); draw(cA); draw(cB); draw(A--C--B--cycle);  dot(A); dot(B); dot(C); label("A",A,S, fontsize(8)); label("B",B,S, fontsize(8)); label("C",C,N, fontsize(8)); label("8 cm",(A+B)/2, S, fontsize(6)); label("7.5 cm",(A+C)/2 + (-0.85,0.8),fontsize(6)); label("4.5 cm",(B+C)/2 + (1.75,-0.1),fontsize(6)); [/asy]



After this, dropping the altitude to $AB$ is simple with a ruler and careful placement, and angle bisector can be estimated quite accurately.

[asy] unitsize(0.55cm); import olympiad;  pair A=(0,0), B=(8,0); pair C=intersectionpoint(circle(A,7.5),circle(B,4.5));  draw(A--B--C--cycle);  pair F=foot(C,A,B); draw(C--F); draw(rightanglemark(A,F,C,2));  pair U=unit(unit(A-B)+unit(C-B)); pair P=intersectionpoint(B--(B+100*U), C--F);  draw(B--P,dashed);  dot(A);dot(B);dot(C);dot(P); label("A",A,S,fontsize(12)); label("B",B,S,fontsize(12)); label("C",C,N,fontsize(12)); label("P",P,NE,fontsize(12)); [/asy]

After all of this, we can reuse our ruler and measure $BP = 2.1\,\text{cm}$, and using our scale of $80=8\,\text{cm}$, our final answer is $\boxed{\text{(D) }21}.$

~shreyan.chethan (notes by curryswish)

Solution 5 (No Trig)

Let \(D\) be the intersection of the altitude from \(C\) to \(AB\). To simplify calculations, divide all side lengths by \(5\), and multiply by \(5\) again at the end. First, we use Heron’s Formula, \(\sqrt{s(s-a)(s-b)(s-c)}\), to find the area. Let \([ABC]\) denote the area of \(\triangle ABC\). By Heron’s Formula, \[[ABC] = \sqrt{20 \cdot 5 \cdot 4 \cdot 11} = 20\sqrt{11}.\] Next, we find the altitude \(CD\) using the formula for the area of a triangle, \(\tfrac{1}{2}bh = \text{area}\): \[\frac{1}{2}(16)(CD) = 20\sqrt{11} \quad \Rightarrow \quad CD = \frac{5\sqrt{11}}{2}.\] We can use the Pythagorean Theorem in \(\triangle CDB\) to find \(DB\): \[DB^2 + \frac{25 \cdot 11}{4} = 81 \quad \Rightarrow \quad 4DB^2 + 275 = 324 \quad \Rightarrow \quad DB^2 = \frac{49}{4},\] so \(DB = \tfrac{7}{2}\). Next, we use the Angle Bisector Theorem to find \(PD\). Let \(x = PC\) and \(y = PD\). Since \(x + y = \tfrac{5\sqrt{11}}{2}\), we have \(x = \tfrac{5\sqrt{11}}{2} - y\). From the given ratio, \[\frac{9}{x} = \frac{7}{2y} \quad \Rightarrow \quad 18y = 7x.\] Substituting \(x = \tfrac{5\sqrt{11}}{2} - y\), \[18y = 7\left(\tfrac{5\sqrt{11}}{2} - y\right) \quad \Rightarrow \quad 25y = \tfrac{35\sqrt{11}}{2},\] so \(y = \tfrac{7\sqrt{11}}{10}\).

Now, using the Pythagorean Theorem again to find \(BP\): \[\frac{49 \cdot 11}{100} + \frac{49}{4} = BP^2 \quad \Rightarrow \quad 100BP^2 = 49(11 + 25) = 49 \cdot 36,\] so \(BP = \tfrac{42}{10} = \tfrac{21}{5}.\)

Finally, multiplying the side lengths by \(5\) again gives \(BP = 21.\), or $\boxed{\text{D}}.$

~Voidling

Solution 6 (Similar Triangle)

[asy] /* Figure drawn by reda*/ import geometry; unitsize(2.5); pair _A = (0, 0); pair _B = (80, 0); pair _C = (75*(75^2+80^2-45^2)/(2*75*80), 75*sqrt(1-((75^2+80^2-45^2)/(2*75*80))^2)); pair _D = (_C.x, 0); pair _E = (_A * 45 + _C * 80)/(45 + 80); pair _F = (_E.x, 0); pair _P = extension(_C, _D, _B, _E);  draw(_B -- _A -- _C -- _B -- _E ^^ _C -- _D); draw(_E -- _F, dashed); /*dot(_A ^^ _B ^^ _C ^^ _D ^^ _E ^^ _F ^^ _P);*/  markrightangle(_B, _D, _P, 0.2*markangleradius()); markrightangle(_B, _F, _E, 0.2*markangleradius()); markangle(_P, _B, _D, radius = 0.25*markangleradius()); markangle(_P, _B, _D, radius = 0.3*markangleradius()); markangle(_C, _B, _P, radius = 0.25*markangleradius()); markangle(_C, _B, _P, radius = 0.3*markangleradius()); markangle(_B, _A, _C, radius = 0.25*markangleradius()); markangle(_B, _A, _C, radius = 0.3*markangleradius());  label("$A$", _A, S); label("$B$", _B, S); label("$C$", _C, N); label("$D$", _D, S); label("$E$", _E, NW); label("$F$", _F, S); label("$P$", _P, NE); label("$27$", (_C + _E)/2, N); label("$48$", (_A + _E)/2, N); label("$45$", (_B + _C)/2, E); label("$80$", (_A + _B)/2, 4S); [/asy]

Due to Angle Bisector Theorem \[\frac{CE}{AE} = \frac{BC}{BA} = \frac{45}{80} = \frac{9}{16}\] \[CE = AC \times \frac{9}{25} = 27\] \[AE = AC \times \frac{16}{25} = 48\] Notice that $\dfrac{CE}{CB} = \dfrac{CB}{CA} = \dfrac{3}{5}$, $\triangle CBE \sim \triangle CAB$, $\angle A = \angle CBE = \angle EBF$, so $\triangle ABE$ is isosceles triangle, hence \[AF = BF\] Notice that $AF:FD = AE:EC = 16:9$, $DB = FB - FD$, then \[AF:DB = 16:7\]

Notice that $\triangle PBD \sim \triangle EAF$, $PB = AE \times \dfrac{BD}{AF} = 48 \times \dfrac{7}{16} = \boxed{\text{(D) }21}.$

~范_mandymath

Solution 7 (Pythagoras+angle bisector theorem)

Let $CD$ be the altitude to side $AB$, and let $E$ be the point of intersection of the angle bisector of $\angle B$. Let $P$ be the point of intersection of the angle bisector and the altitude.

By Pythagoras, $CD^2=BC^2-BD^2=AC^2-AD^2$

We let $BD = x$, so $AD=80-x$

Now we have

\[45^2-x^2=75^2-(80-x)^2\]

(This looks complicated, but we can see that we are going to have two $-x^2$ terms on both sides, so it cancels out)

Simplifying and rearranging gives us $80-2x=45$, so $x=\frac{35}{2}$

Therefore, $BD=\frac{35}{2}$, and $AD=\frac{125}{2}$. This gives us $CD=\frac{25}{2}\sqrt{11}$


Now, note that in triangle $BDC$, $BP$ bisects $\angle DBC$

By the angle bisection theorem, we have $\frac{BD}{DP}=\frac{BC}{CP}$

which gives us $\frac{DP}{CP}=\frac{BD}{BC}=\frac{7}{18}$

We have $DP=\frac{7}{25}*CD=\frac{7}{2}\sqrt{11}$ and $CP=\frac{18}{25}*CD=\frac{18}{2}\sqrt{11}$

So

$BP^2=BD*BC-DP*CP=\frac{35}{2}*45-\frac{7}{2}*\frac{18}{2}*11=441$

Therefore, $BP=21$

(This is my first solution, pls point out any mistakes in math or LATEX). ~backtosq-1

Solution 8 (Pythagora's + Double Angle Identity)

Since all the lengths share a factor of $5$, divide by $5$ and multiply it back at the end for smaller numbers. Drop the altitude from vertex $C$ to point $D$ on $AB$. Then comparing the altitude by Pythagora's on both sides gives \[9^2-x^2=15^2-(16-x)^2=15^2-16^2+32x-x^2=-31+32x-x^2\] Cancelling the $-x^2$ then solving gives us $x=\frac{112}{32}=\frac{7}{2}$. Since $\triangle BDC$ is a right triangle with $\angle B=2\theta$, we find $\cos(2\theta)=\frac{\frac{7}{2}}{9}=\frac{7}{18}$.

Let $\theta=\angle PBA=\angle PBC$. Because $\angle B$ is opposite to the leg $9<15$ and not the hypotenuse, we must have that $2\theta$ is acute, likewise for $\theta$. Hence, $\cos \theta>0$.

Thus, using cosine definition on $\triangle BDP$ and the double angle identity $\cos 2\theta=2\cos^2 \theta-1$, we get \[\cos \theta=\frac{7/2}{BP}=\sqrt{ \frac{1+\cos 2\theta}{2} }=\sqrt{ \frac{1+\frac{7}{18}}{2} }=\sqrt{ \frac{25}{36} }=\frac{5}{6}\] Finally, solving for $BP=\frac{7}{2\cos\theta}=\frac{7}{2}\cdot \frac{6}{5}=\frac{21}{5}$. Scaling back to the original diagram by $5$ gives $\boxed{\textbf{(D)}~21}$.

Video Solution (In 2 Mins) (Really Easy)

https://youtu.be/nAimLnvSTwQ?si=85o8QuW5HbDldWdU ~ Pi Academy

Video Solution 1 by OmegaLearn

https://youtu.be/DI-q_-cYMVU

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=dAeyV60Hu5c

See Also

2025 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2025 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.