2022 USAMO Problems/Problem 4
Solution
Since
is a perfect square and
is prime, we should have
for some positive integer
. Let
. Therefore,
, and substituting that into the
and solving for
gives
Notice that we also have
and so
. We run through the cases
: Then
so
, which works.
: This means
, so
, a contradiction.
: This means that
. Since
can be split up into two factors
such that
and
, we get
and each factor is greater than
, contradicting the primality of
.
Thus, the only solution is
.