2005 AMC 12B Problems/Problem 7: Difference between revisions
Humanity789 (talk | contribs) |
|||
| Line 36: | Line 36: | ||
== Solution 2== | == Solution 2== | ||
You can also assign <math>x</math> and <math>y</math> to be <math>0</math>. Then you can easily see that the diagonals are <math>6</math> and <math>8</math>. Multiply and divide by <math>2</math> to get D. <math>24</math> | You can also assign <math>x</math> and <math>y</math> to be <math>0</math>. Then you can easily see that the diagonals are <math>6</math> and <math>8</math>. Multiply and divide by <math>2</math> to get D. <math>24</math> | ||
== See also == | == See also == | ||
{{AMC12 box|year=2005|ab=B|num-b=6|num-a=8}} | {{AMC12 box|year=2005|ab=B|num-b=6|num-a=8}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 20:34, 26 December 2018
Problem
What is the area enclosed by the graph of
?
Solution 1
If we get rid of the absolute values, we are left with the following 4 equations (using the logic that if
, then
is either
or
):
We can then put these equations in slope-intercept form in order to graph them.
Now you can graph the lines to find the shape of the graph:
We can easily see that it is a rhombus with diagonals of
and
. The area is
, or
Solution 2
You can also assign
and
to be
. Then you can easily see that the diagonals are
and
. Multiply and divide by
to get D.
See also
| 2005 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 6 |
Followed by Problem 8 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.