Art of Problem Solving

Mock AIME 1 2006-2007 Problems/Problem 2: Difference between revisions

Altheman (talk | contribs)
No edit summary
mNo edit summary
Line 1: Line 1:
2. Let <math>\star (x)</math> be the sum of the digits of a positive integer <math>x</math>. <math>\mathcal{S}</math> is the set of positive integers such that for all elements <math>n</math> in <math>\mathcal{S}</math>, we have that <math>\star (n)=12</math> and <math>0\le n< 10^{7}</math>. If <math>m</math> is the number of elements in <math>\mathcal{S}</math>, compute <math>\star(m)</math>.
Let <math>\star (x)</math> be the sum of the digits of a positive integer <math>x</math>. <math>\mathcal{S}</math> is the set of positive integers such that for all elements <math>n</math> in <math>\mathcal{S}</math>, we have that <math>\star (n)=12</math> and <math>0\le n< 10^{7}</math>. If <math>m</math> is the number of elements in <math>\mathcal{S}</math>, compute <math>\star(m)</math>.


==Solution==
{{solution}}
----
[[Mock AIME 1 2006-2007/Problem 1 | Previous Problem]]
[[Mock AIME 1 2006-2007/Problem 3 | Next Problem]]
[[Mock AIME 1 2006-2007]]
[[Mock AIME 1 2006-2007]]

Revision as of 16:25, 17 August 2006

Let $\star (x)$ be the sum of the digits of a positive integer $x$. $\mathcal{S}$ is the set of positive integers such that for all elements $n$ in $\mathcal{S}$, we have that $\star (n)=12$ and $0\le n< 10^{7}$. If $m$ is the number of elements in $\mathcal{S}$, compute $\star(m)$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.


Previous Problem Next Problem Mock AIME 1 2006-2007