1983 AHSME Problems/Problem 28: Difference between revisions
Created page with "Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{AD}{DB} = \frac{CE}{EB}..." |
Added question, made the solution a bit clearer. |
||
| Line 1: | Line 1: | ||
Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{ | == Problem 28 == | ||
Triangle <math>\triangle ABC</math> in the figure has area <math>10</math>. Points <math>D, E</math> and <math>F</math>, all distinct from <math>A, B</math> and <math>C</math>, | |||
are on sides <math>AB, BC</math> and <math>CA</math> respectively, and <math>AD = 2, DB = 3</math>. If triangle <math>\triangle ABE</math> and quadrilateral <math>DBEF</math> | |||
have equal areas, then that area is | |||
<asy> | |||
defaultpen(linewidth(0.7)+fontsize(10)); | |||
pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B); | |||
draw(A--B--C--A--E--F--D); | |||
pair point=incenter(A,B,C); | |||
label("$A$", A, dir(point--A)); | |||
label("$B$", B, dir(point--B)); | |||
label("$C$", C, dir(point--C)); | |||
label("$D$", D, dir(point--D)); | |||
label("$E$", E, dir(point--E)); | |||
label("$F$", F, dir(point--F)); | |||
label("$2$", (2,0), S); | |||
label("$3$", (7,0), S);</asy> | |||
<math>\textbf{(A)}\ 4\qquad | |||
\textbf{(B)}\ 5\qquad | |||
\textbf{(C)}\ 6\qquad | |||
\textbf{(D)}\ \frac{5}{3}\sqrt{10}\qquad | |||
\textbf{(E)}\ \text{not uniquely determined} </math> | |||
== Solution == | |||
Clearly since <math>[DBEF] = [ABE]</math> it follows that <math>[ADF] = [AFE]</math>. This implies that <math>AC \parallel DE</math> and so <math>\frac{BE}{BC} = \frac{BD}{DA} = \frac{3}{5}</math>. Since <math>\triangle ABE</math> and <math>\triangle ABC</math> have the same height, <math>[ABE] = \frac{3}{5} \cdot [ABC]=\frac{3}{5}\cdot 10 = 6</math>, hence our answer is <math>\fbox{C}</math> | |||
Revision as of 02:07, 9 July 2018
Problem 28
Triangle
in the figure has area
. Points
and
, all distinct from
and
,
are on sides
and
respectively, and
. If triangle
and quadrilateral
have equal areas, then that area is
Solution
Clearly since
it follows that
. This implies that
and so
. Since
and
have the same height,
, hence our answer is