1969 AHSME Problems/Problem 30: Difference between revisions
Created page with "== Problem == Let <math>P</math> be a point of hypotenuse <math>AB</math> (or its extension) of isosceles right triangle <math>ABC</math>. Let <math>s=AP^2+PB^2</math>. Then: <..." |
Rockmanex3 (talk | contribs) Solution to Problem 30 |
||
| Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
== See | <asy> | ||
pair A=(0,50),B=(50,0),C=(0,0); | |||
draw(A--B--C--A); | |||
dot(A); | |||
label("$A$",A,NE); | |||
dot(B); | |||
label("$B$",B,NE); | |||
dot(C); | |||
label("$C$",C,SW); | |||
pair P=(14,36); | |||
dot(P); | |||
label("$P$",P,NE); | |||
draw((0,36)--P,dotted); | |||
draw((14,0)--P,dotted); | |||
label("$a$",(7,36),S); | |||
label("$a$",(0,43),W); | |||
label("$x-a$",(14,18),E); | |||
label("$x-a$",(32,0),S); | |||
</asy> | |||
Consider the case where <math>P</math> is on the hypotenuse of <math>AB</math>. Draw perpendicular lines from <math>P</math> towards the sides. Using the [[Pythagorean Theorem]], | |||
<cmath>AP^2 = a^2 + a^2</cmath> | |||
<cmath>BP^2 = (x-a)^2 + (x-a)^2</cmath> | |||
<cmath>CP^2 = a^2 + (x-a)^2</cmath> | |||
This means | |||
<cmath>s = 4a^2 - 4ax + 2x^2</cmath> | |||
<cmath>2 \cdot CP^2 = 4a^2 - 4ax + 2x^2</cmath> | |||
Thus, <math>s = 2 \cdot CP^2</math> when <math>P</math> is on the hypotenuse of <math>AB</math>. | |||
<asy> | |||
pair A=(0,50),B=(50,0),C=(0,0); | |||
draw(A--B--C--A); | |||
dot(A); | |||
label("$A$",A,NE); | |||
dot(B); | |||
label("$B$",B,NE); | |||
dot(C); | |||
label("$C$",C,SW); | |||
pair P=(-10,60); | |||
dot(P); | |||
label("$P$",P,NE); | |||
draw(P--A); | |||
draw(P--(-10,50)--A,dotted); | |||
draw(P--(-10,0)--C,dotted); | |||
pair D=(-10,50); | |||
dot(D); | |||
label("$D$",D,SW); | |||
label("$a$",(-10,55),W); | |||
label("$a$",(-5,50),S); | |||
label("$x$",(0,25),E); | |||
label("$x$",(25,0),S); | |||
</asy> | |||
Consider the case where <math>P</math> is on the extension of <math>AB</math>. [[WLOG]], let point <math>A</math> be between point <math>P</math> and point <math>B</math>. Extend <math>BC</math> and draw perpendicular line from <math>P</math>. Also, draw point <math>D</math>, where <math>PD \parallel AC</math> and <math>DA \parallel CB</math>. | |||
Using the Pythagorean Theorem again, | |||
<cmath>AP^2 = a^2 + a^2</cmath> | |||
<cmath>BP^2 = (a+x)^2 + (a+x)^2</cmath> | |||
<cmath>CP^2 = (a+x)^2 + a^2</cmath> | |||
That means | |||
<cmath>s = 4a^2 + 4ax + 2x^2</cmath> | |||
<cmath>2 \cdot CP^2 = 4a^2 + 4ax + 2x^2</cmath> | |||
Thus, <math>s = 2 \cdot CP^2</math> when <math>P</math> is outside the hypotenuse. | |||
In summary, <math>AP^2 + BP^2 = 2 \cdot CP^2</math>, so the answer is <math>\boxed{\textbf{(D)}}</math>. | |||
== See Also == | |||
{{AHSME 35p box|year=1969|num-b=29|num-a=31}} | {{AHSME 35p box|year=1969|num-b=29|num-a=31}} | ||
[[Category: | [[Category: Introductory Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 22:12, 21 June 2018
Problem
Let
be a point of hypotenuse
(or its extension) of isosceles right triangle
. Let
. Then:
Solution
Consider the case where
is on the hypotenuse of
. Draw perpendicular lines from
towards the sides. Using the Pythagorean Theorem,
This means
Thus,
when
is on the hypotenuse of
.
Consider the case where
is on the extension of
. WLOG, let point
be between point
and point
. Extend
and draw perpendicular line from
. Also, draw point
, where
and
.
Using the Pythagorean Theorem again,
That means
Thus,
when
is outside the hypotenuse.
In summary,
, so the answer is
.
See Also
| 1969 AHSC (Problems • Answer Key • Resources) | ||
| Preceded by Problem 29 |
Followed by Problem 31 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.