Art of Problem Solving

2018 AIME II Problems/Problem 11: Difference between revisions

P groudon (talk | contribs)
Created page with "==Problem== Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq..."
 
No edit summary
Line 2: Line 2:


Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>.
Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>.
==Solution==
If the first number is 6, then there are no restrictions. There are 5!, or 120 ways to place the other 5 numbers
If the first number is 5, 6 can go in four places, and there are 4! ways to place the other 4 numbers. 4 * 4! = 96 ways.
If the first number is 4, ....
4 6 _ _ _ _ -> 24 ways
4 _ 6 _ _ _ -> 24 ways
4 _ _ 6 _ _ -> 24 ways
4 _ _ _ 6 _ -> 5 must go between 4 and 6, so there are 3 * 3! = 18 ways.
24 + 24 + 24 + 18 = 90 ways if 4 is first.
If the first number is 3, ....
3 6 _ _ _ _ -> 24 ways
3 _ 6 _ _ _ -> 24 ways
3 1 _ 6 _ _ -> 4 ways
3 2 _ 6 _ _ -> 4 ways
3 4 _ 6 _ _ -> 6 ways
3 5 _ 6 _ _ -> 6 ways
3 5 _ _ 6 _ -> 6 ways
3 _ 5 _ 6 _ -> 6 ways
3 _ _ 5 6 _ -> 4 ways
24 + 24 + 4 + 4 + 6 + 6 + 6 + 6 + 4 = 84 ways
If the first number is 2, ....
2 6 _ _ _ _ -> 24 ways
2 _ 6 _ _ _ -> 18 ways
2 3 _ 6 _ _ -> 4 ways
2 4 _ 6 _ _ -> 4 ways
2 4 _ 6 _ _ -> 6 ways
2 5 _ 6 _ _ -> 6 ways
2 5 _ _ 6 _ -> 6 ways
2 _ 5 _ 6 _ -> 4 ways
2 4 _ 5 6 _ -> 2 ways
2 3 4 5 6 1 -> 1 way
24 + 18 + 4 + 4 + 6 + 6 + 6 + 4 + 2 + 1 = 71 ways
Grand Total : 120 + 96 + 90 + 84 + 71 = <math>\boxed{461}</math>


{{AIME box|year=2018|n=II|num-b=10|num-a=12}}
{{AIME box|year=2018|n=II|num-b=10|num-a=12}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 12:15, 24 March 2018

Problem

Find the number of permutations of $1, 2, 3, 4, 5, 6$ such that for each $k$ with $1$ $\leq$ $k$ $\leq$ $5$, at least one of the first $k$ terms of the permutation is greater than $k$.

Solution

If the first number is 6, then there are no restrictions. There are 5!, or 120 ways to place the other 5 numbers


If the first number is 5, 6 can go in four places, and there are 4! ways to place the other 4 numbers. 4 * 4! = 96 ways.


If the first number is 4, ....

4 6 _ _ _ _ -> 24 ways

4 _ 6 _ _ _ -> 24 ways

4 _ _ 6 _ _ -> 24 ways

4 _ _ _ 6 _ -> 5 must go between 4 and 6, so there are 3 * 3! = 18 ways.

24 + 24 + 24 + 18 = 90 ways if 4 is first.


If the first number is 3, ....

3 6 _ _ _ _ -> 24 ways

3 _ 6 _ _ _ -> 24 ways

3 1 _ 6 _ _ -> 4 ways

3 2 _ 6 _ _ -> 4 ways

3 4 _ 6 _ _ -> 6 ways

3 5 _ 6 _ _ -> 6 ways

3 5 _ _ 6 _ -> 6 ways

3 _ 5 _ 6 _ -> 6 ways

3 _ _ 5 6 _ -> 4 ways

24 + 24 + 4 + 4 + 6 + 6 + 6 + 6 + 4 = 84 ways


If the first number is 2, ....

2 6 _ _ _ _ -> 24 ways

2 _ 6 _ _ _ -> 18 ways

2 3 _ 6 _ _ -> 4 ways

2 4 _ 6 _ _ -> 4 ways

2 4 _ 6 _ _ -> 6 ways

2 5 _ 6 _ _ -> 6 ways

2 5 _ _ 6 _ -> 6 ways

2 _ 5 _ 6 _ -> 4 ways

2 4 _ 5 6 _ -> 2 ways

2 3 4 5 6 1 -> 1 way


24 + 18 + 4 + 4 + 6 + 6 + 6 + 4 + 2 + 1 = 71 ways


Grand Total : 120 + 96 + 90 + 84 + 71 = $\boxed{461}$

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.