Art of Problem Solving

1961 AHSME Problems/Problem 33: Difference between revisions

No edit summary
mNo edit summary
Line 3: Line 3:
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:


<math> \textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3}\qquad \textbf{(E)} \ \text{More than three, but finite} </math>
<cmath>\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}</cmath>
{{MAA Notice}}
{{MAA Notice}}

Revision as of 15:25, 5 September 2017

Problem 33

The number of solutions of $2^{2x}-3^{2y}=55$, in which $x$ and $y$ are integers, is:

\[\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}\] These problems are copyrighted © by the Mathematical Association of America.