Art of Problem Solving

2006 AMC 12B Problems/Problem 8: Difference between revisions

Moab33 (talk | contribs)
Abourque72 (talk | contribs)
Line 6: Line 6:
</math>
</math>


== Solution ==
== Solution 1 ==
<math>4x-4a=y</math>
<math>4x-4a=y</math>


Line 18: Line 18:


<math>a+b=\frac{9}{4} \Rightarrow \text{(E)}</math>
<math>a+b=\frac{9}{4} \Rightarrow \text{(E)}</math>
== Solution 2 ==
Add both equations:
<math>[x=\frac{1}{4}y+a]+[y=\frac{1}{4}x+b]</math>
Simplify:
<math>\frac{4}{4}(x+y)=\frac{1}{4}(x+y)+(a+b)</math>
Isolate our solution:
<math>\frac{3}{4}(x+y)=a+b</math>
Substitute the point of intersection [x=1, y=2]
<math>a+b=\frac{3}{4}\cdot3=\frac{9}{4} \Rightarrow \text{(E)}</math>


== See also ==
== See also ==
{{AMC12 box|year=2006|ab=B|num-b=7|num-a=9}}
{{AMC12 box|year=2006|ab=B|num-b=7|num-a=9}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 22:17, 5 April 2017

Problem

The lines $x = \frac 14y + a$ and $y = \frac 14x + b$ intersect at the point $(1,2)$. What is $a + b$?

$\text {(A) } 0 \qquad \text {(B) } \frac 34 \qquad \text {(C) } 1 \qquad \text {(D) } 2 \qquad \text {(E) } \frac 94$

Solution 1

$4x-4a=y$

$4x-4a=\frac{1}{4}x+b$

$4\cdot1-4a=\frac{1}{4}\cdot1+b=2$

$a=\frac{1}{2}$

$b=\frac{7}{4}$

$a+b=\frac{9}{4} \Rightarrow \text{(E)}$

Solution 2

Add both equations:

$[x=\frac{1}{4}y+a]+[y=\frac{1}{4}x+b]$

Simplify:

$\frac{4}{4}(x+y)=\frac{1}{4}(x+y)+(a+b)$

Isolate our solution:

$\frac{3}{4}(x+y)=a+b$

Substitute the point of intersection [x=1, y=2]

$a+b=\frac{3}{4}\cdot3=\frac{9}{4} \Rightarrow \text{(E)}$

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.