Art of Problem Solving

Mock AIME 2 2006-2007 Problems/Problem 5: Difference between revisions

4everwise (talk | contribs)
No edit summary
 
4everwise (talk | contribs)
No edit summary
Line 1: Line 1:
Given that <math>\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=a\pm \sqrt{b+i},</math> find <math>\displaystyle  \lfloor 100ab \rfloor.</math>
==Problem==
 
Given that <math>\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots</math> and <math>\displaystyle z=n\pm \sqrt{-i},</math> find <math>\displaystyle  \lfloor 100n \rfloor.</math>

Revision as of 12:05, 25 July 2006

Problem

Given that $\displaystyle  iz^2=1+\frac 2z + \frac{3}{z^2}+\frac{4}{z ^3}+\frac{5}{z^4}+\cdots$ and $\displaystyle z=n\pm \sqrt{-i},$ find $\displaystyle  \lfloor 100n \rfloor.$