2006 AIME II Problems/Problem 1: Difference between revisions
Doitsudoitsu (talk | contribs) latex |
|||
| Line 27: | Line 27: | ||
B</math>, <math>\angle C</math>, <math>\angle E</math>, and <math>\angle F</math> are congruent, the degree-measure of each of them is <math> | B</math>, <math>\angle C</math>, <math>\angle E</math>, and <math>\angle F</math> are congruent, the degree-measure of each of them is <math> | ||
{{720-2\cdot90}\over4}= 135</math>. Lines <math>BF</math> and <math>CE</math> divide the hexagonal region into two right triangles and a rectangle. Let <math>AB=x</math>. Then <math>BF=x\sqrt2</math>. Thus | {{720-2\cdot90}\over4}= 135</math>. Lines <math>BF</math> and <math>CE</math> divide the hexagonal region into two right triangles and a rectangle. Let <math>AB=x</math>. Then <math>BF=x\sqrt2</math>. Thus | ||
<cmath>\begin{align*} | |||
2116(\sqrt2+1)&=[ABCDEF]\\ | 2116(\sqrt2+1)&=[ABCDEF]\\ | ||
&=2\cdot {1\over2}x^2+x\cdot x\sqrt2=x^2(1+\sqrt2), | &=2\cdot {1\over2}x^2+x\cdot x\sqrt2=x^2(1+\sqrt2), | ||
\end{align*}so < | \end{align*}</cmath>so <math>x^2=2116</math>, and <math>x=\boxed{46}</math>. | ||
[asy] | [asy] | ||
pair A,B,C,D, | pair A,B,C,D,E,F; | ||
A=(0,0); | A=(0,0); | ||
B=(7,0); | B=(7,0); | ||
C=(13,6); | |||
E=(6,13); | |||
D=(13,13); | |||
F=(0,7); | F=(0,7); | ||
dot(A); | dot(A); | ||
dot(B); | dot(B); | ||
dot(C); | dot(C); | ||
dot(D); | dot(D); | ||
dot( | dot(E); | ||
dot(F); | dot(F); | ||
draw(A--B--C--D-- | draw(A--B--C--D--E--F--cycle,linewidth(0.7)); | ||
label("{\tiny < | label("{\tiny <math>A</math>}",A,S); | ||
label("{\tiny < | label("{\tiny <math>B</math>}",B,S); | ||
label("{\tiny < | label("{\tiny <math>C</math>}",C,E); | ||
label("{\tiny < | label("{\tiny <math>D</math>}",D,N); | ||
label("{\tiny < | label("{\tiny <math>E</math>}",E,N); | ||
label("{\tiny </math> | label("{\tiny <math>F</math>}",F,W); | ||
[/asy] | [/asy] | ||
Revision as of 15:08, 30 May 2016
Problem
In convex hexagon
, all six sides are congruent,
and
are right angles, and
and
are congruent. The area of the hexagonal region is
Find
.
Solution
Let the side length be called
, so
.
The diagonal
. Then the areas of the triangles AFB and CDE in total are
,
and the area of the rectangle BCEF equals
Then we have to solve the equation
.
Therefore,
is
.
Solution 2
Because
,
,
, and
are congruent, the degree-measure of each of them is
. Lines
and
divide the hexagonal region into two right triangles and a rectangle. Let
. Then
. Thus
so
, and
.
[asy]
pair A,B,C,D,E,F;
A=(0,0);
B=(7,0);
C=(13,6);
E=(6,13);
D=(13,13);
F=(0,7);
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
draw(A--B--C--D--E--F--cycle,linewidth(0.7));
label("{\tiny
}",A,S);
label("{\tiny
}",B,S);
label("{\tiny
}",C,E);
label("{\tiny
}",D,N);
label("{\tiny
}",E,N);
label("{\tiny
}",F,W);
[/asy]
See also
| 2006 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by First Question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.
