2010 AMC 12B Problems/Problem 20: Difference between revisions
| Line 20: | Line 20: | ||
Since <math>\cos^3x=\sin^2x=1-\cos^2x</math>, we have <math>\cos^3x+\cos^2x=1 \implies \cos^2x(\cos x+1)=1 \implies \cos x+1=\frac{1}{\cos^2 x}</math>, which is <math>a_8</math> making our answer <math>8 \Rightarrow \boxed{E}</math>. | Since <math>\cos^3x=\sin^2x=1-\cos^2x</math>, we have <math>\cos^3x+\cos^2x=1 \implies \cos^2x(\cos x+1)=1 \implies \cos x+1=\frac{1}{\cos^2 x}</math>, which is <math>a_8</math> , making our answer <math>8 \Rightarrow \boxed{E}</math>. | ||
== See also == | == See also == | ||
{{AMC12 box|year=2010|num-b=19|num-a=21|ab=B}} | {{AMC12 box|year=2010|num-b=19|num-a=21|ab=B}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 13:50, 3 April 2016
Problem
A geometric sequence
has
,
, and
for some real number
. For what value of
does
?
Solution
By the defintion of a geometric sequence, we have
. Since
, we can rewrite this as
.
The common ratio of the sequence is
, so we can write
Since
, we have
, which is
, making our answer
.
See also
| 2010 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.