2004 AMC 12A Problems/Problem 8: Difference between revisions
m Replaced diagram with Asymptote |
|||
| Line 3: | Line 3: | ||
In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>? | In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>? | ||
<asy> | |||
size(150); | |||
defaultpen(linewidth(0.4)); | |||
//Variable Declarations | |||
pair A, B, C, D, E; | |||
//Variable Definitions | |||
A=(0, 0); | |||
B=(4, 0); | |||
C=(4, 6); | |||
E=(0, 8); | |||
D=extension(A,C,B,E); | |||
//Initial Diagram | |||
draw(A--B--C--A--E--B); | |||
label("$A$",A,SW); | |||
label("$B$",B,SE); | |||
label("$C$",C,NE); | |||
label("$D$",D,3N); | |||
label("$E$",E,NW); | |||
//Side labels | |||
label("$4$",A--B,S); | |||
label("$8$",A--E,W); | |||
label("$6$",B--C,ENE); | |||
</asy> | |||
<math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math> | <math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math> | ||
__TOC__ | __TOC__ | ||
== Solution 1 == | == Solution 1 == | ||
Revision as of 11:13, 5 February 2016
- The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.
Problem
In the overlapping triangles
and
sharing common side
,
and
are right angles,
,
,
, and
and
intersect at
. What is the difference between the areas of
and
?
Solution 1
Since
and
,
. By alternate interior angles and
, we find that
, with side length ratio
. Their heights also have the same ratio, and since the two heights add up to
, we have that
and
. Subtracting the areas,
.
Solution 2
Let
represent the area of figure
. Note that
and
.
See also
| 2004 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 7 |
Followed by Problem 9 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2004 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.