2001 AMC 10 Problems/Problem 24: Difference between revisions
m →Solution: added in asy diagram |
|||
| Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
[asy] | |||
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ | |||
import graph; size(11.6cm); | |||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | |||
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | |||
pen dotstyle = black; /* point style */ | |||
real xmin = -4.3, xmax = 7.3, ymin = -3.16, ymax = 6.3; /* image dimensions */ | |||
/* draw figures */ | |||
draw(circle((0.2,4.92), 1.3)); | |||
draw(circle((1.04,1.58), 2.14)); | |||
draw((-1.1,4.92)--(0.2,4.92)); | |||
draw((0.2,4.92)--(1.04,1.58)); | |||
draw((1.04,1.58)--(-1.1,1.58)); | |||
draw((-1.1,1.58)--(-1.1,4.92)); | |||
/* dots and labels */ | |||
dot((-1.1,4.92),dotstyle); | |||
label("<math>A</math>", (-1.02,5.12), NE * labelscalefactor); | |||
dot((0.2,4.92),dotstyle); | |||
label("<math>B</math>", (0.28,5.12), NE * labelscalefactor); | |||
dot((-1.1,1.58),dotstyle); | |||
label("<math>D</math>", (-1.02,1.78), NE * labelscalefactor); | |||
dot((1.04,1.58),dotstyle); | |||
label("<math>C</math>", (1.12,1.78), NE * labelscalefactor); | |||
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | |||
/* end of picture */ | |||
[\asy] | |||
If <math> AB=x </math> and <math> CD=y </math>,then <math> BC=x+y </math>. By the [[Pythagorean theorem]], we have <math> (x+y)^2=(y-x)^2+49 </math> Solving the equation, we get <math> 4xy=49 \implies xy = \boxed{\textbf{(B)}\ 12.25} </math>. | If <math> AB=x </math> and <math> CD=y </math>,then <math> BC=x+y </math>. By the [[Pythagorean theorem]], we have <math> (x+y)^2=(y-x)^2+49 </math> Solving the equation, we get <math> 4xy=49 \implies xy = \boxed{\textbf{(B)}\ 12.25} </math>. | ||
Revision as of 11:08, 1 December 2015
Problem
In trapezoid
,
and
are perpendicular to
, with
,
, and
. What is
?
Solution
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.6cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.3, xmax = 7.3, ymin = -3.16, ymax = 6.3; /* image dimensions */
/* draw figures */
draw(circle((0.2,4.92), 1.3)); draw(circle((1.04,1.58), 2.14)); draw((-1.1,4.92)--(0.2,4.92)); draw((0.2,4.92)--(1.04,1.58)); draw((1.04,1.58)--(-1.1,1.58)); draw((-1.1,1.58)--(-1.1,4.92));
/* dots and labels */
dot((-1.1,4.92),dotstyle);
label("
", (-1.02,5.12), NE * labelscalefactor);
dot((0.2,4.92),dotstyle);
label("
", (0.28,5.12), NE * labelscalefactor);
dot((-1.1,1.58),dotstyle);
label("
", (-1.02,1.78), NE * labelscalefactor);
dot((1.04,1.58),dotstyle);
label("
", (1.12,1.78), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[\asy]
If
and
,then
. By the Pythagorean theorem, we have
Solving the equation, we get
.
See Also
| 2001 AMC 10 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.