2004 AMC 12A Problems/Problem 18: Difference between revisions
| Line 63: | Line 63: | ||
defaultpen(fontsize(10)); | defaultpen(fontsize(10)); | ||
pair A=(0,0), B=(2,0), C=(2,2), D=(0,2), E=(0,1/2), F=E+(C-E)/abs(C-E)/2; | pair A=(0,0), B=(2,0), C=(2,2), D=(0,2), E=(0,1/2), F=E+(C-E)/abs(C-E)/2; | ||
draw(A--B--C--D--cycle);draw(C--E); | draw(A--B--C--D--cycle);draw(C--E);draw( | ||
draw(Arc((1,0),1,0,180));draw((A+B)/2--F); | draw(Arc((1,0),1,0,180));draw((A+B)/2--F); | ||
label("$A$",A,(-1,-1)); | label("$A$",A,(-1,-1)); | ||
| Line 73: | Line 73: | ||
label("$x$",(A+E)/2,(-1, 0)); | label("$x$",(A+E)/2,(-1, 0)); | ||
label("$x$",(E+F)/2,( 0, 1)); | label("$x$",(E+F)/2,( 0, 1)); | ||
label( | label("$2$",(F+C)/2,( 0, 1)); | ||
label("$2$",(D+C)/2,( 0, 1)); | |||
label("$2$",(B+C)/2,( 1, 0)); | |||
label("$O$, (1,0), S); | |||
</asy> | </asy> | ||
Revision as of 13:24, 25 July 2015
- The following problem is from both the 2004 AMC 12A #18 and 2004 AMC 10A #22, so both problems redirect to this page.
Problem
Square
has side length
. A semicircle with diameter
is constructed inside the square, and the tangent to the semicircle from
intersects side
at
. What is the length of
?
Solution 1
Let the point of tangency be
. By the Two Tangent Theorem
and
. Thus
. The Pythagorean Theorem on
yields
Hence
.
Solution 2
Clearly,
. Thus, the sides of right triangle
are in arithmetic progression. Thus it is similar to the triangle
and since
,
.
Solution 3
size(150);
defaultpen(fontsize(10));
pair A=(0,0), B=(2,0), C=(2,2), D=(0,2), E=(0,1/2), F=E+(C-E)/abs(C-E)/2;
draw(A--B--C--D--cycle);draw(C--E);draw(
draw(Arc((1,0),1,0,180));draw((A+B)/2--F);
label("$A$",A,(-1,-1));
label("$B$",B,( 1,-1));
label("$C$",C,( 1, 1));
label("$D$",D,(-1, 1));
label("$E$",E,(-1, 0));
label("$F$",F,( 0, 1));
label("$x$",(A+E)/2,(-1, 0));
label("$x$",(E+F)/2,( 0, 1));
label("$2$",(F+C)/2,( 0, 1));
label("$2$",(D+C)/2,( 0, 1));
label("$2$",(B+C)/2,( 1, 0));
label("$O$, (1,0), S);
(Error making remote request. Unknown error_msg)
See also
| 2004 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 17 |
Followed by Problem 19 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2004 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 21 |
Followed by Problem 23 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.
