Mock AIME 1 Pre 2005 Problems/Problem 11: Difference between revisions
Brut3Forc3 (talk | contribs) added solution |
Jabberwock2 (talk | contribs) No edit summary |
||
| Line 7: | Line 7: | ||
Consider the polynomial <cmath>f(x)=(x-1)^{2004}=\sum_{n=0}^{2004}\binom{2004}{n}\cdot(-1)^n x^{2004-n}.</cmath> | Consider the polynomial <cmath>f(x)=(x-1)^{2004}=\sum_{n=0}^{2004}\binom{2004}{n}\cdot(-1)^n x^{2004-n}.</cmath> | ||
Let <math>\omega^3=1</math> with <math>\omega\neq 1</math>. We have | Let <math>\omega^3=1</math> with <math>\omega\neq 1</math>. We have | ||
\frac{f(1)+f(\omega)+f(\omega^2)}{3} | |||
\begin{align*} | |||
\frac{f(1)+f(\omega)+f(\omega^2)}{3} \\ | |||
&= \frac{(1-1)^{2004}+(\omega-1)^{2004}+(\omega^2-1)^{2004}}{3} \\ | &= \frac{(1-1)^{2004}+(\omega-1)^{2004}+(\omega^2-1)^{2004}}{3} \\ | ||
&= \frac{1}{3}\sum_{n=0}^{2004}\binom{2004}{n}\cdot(-1)^n\cdot(1^{2004-n}+\omega^{2004-n}+(\omega^2)^{2004-n}) \\ | &= \frac{1}{3}\sum_{n=0}^{2004}\binom{2004}{n}\cdot(-1)^n\cdot(1^{2004-n}+\omega^{2004-n}+(\omega^2)^{2004-n}) \\ | ||
&= \sum_{n=0}^{668}(-1)^n \binom{2004}{3n} | &= \sum_{n=0}^{668}(-1)^n \binom{2004}{3n} | ||
\end{align*} | |||
where the last step follows because <math>1^k+\omega^k+\omega^{2k}</math> is 0 when <math>k</math> is not divisible by 3, and <math>3</math> when <math>k</math> is divisible by 3. | where the last step follows because <math>1^k+\omega^k+\omega^{2k}</math> is 0 when <math>k</math> is not divisible by 3, and <math>3</math> when <math>k</math> is divisible by 3. | ||
Revision as of 09:46, 2 July 2015
Problem
Let
denote the value of the sum
Determine the remainder obtained when
is divided by
.
Solution
Consider the polynomial
Let
with
. We have
\begin{align*} \frac{f(1)+f(\omega)+f(\omega^2)}{3} \\ &= \frac{(1-1)^{2004}+(\omega-1)^{2004}+(\omega^2-1)^{2004}}{3} \\ &= \frac{1}{3}\sum_{n=0}^{2004}\binom{2004}{n}\cdot(-1)^n\cdot(1^{2004-n}+\omega^{2004-n}+(\omega^2)^{2004-n}) \\ &= \sum_{n=0}^{668}(-1)^n \binom{2004}{3n} \end{align*}
where the last step follows because
is 0 when
is not divisible by 3, and
when
is divisible by 3.
We now compute
. WLOG, let
. Then
, and
. These numbers are both of the form
, where
is a 12th root of unity, so both of these, when raised to the 2004-th power, become
. Thus, our desired sum becomes
.
To find
, we notice that
so that
. Then
. Thus, our answer is
.
See also
| Mock AIME 1 Pre 2005 (Problems, Source) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||