Art of Problem Solving

2006 IMO Problems: Difference between revisions

DANCH (talk | contribs)
No edit summary
Thequantumguy (talk | contribs)
Line 2: Line 2:


==Problem 2==
==Problem 2==
Let <math>P</math> be a regular 2006-gon. A diagonal of <math>P</math> is called good if its endpoints divide the boundary of <math>P</math> into two parts, each composed of an odd number of sides of <math>P</math>. The sides of <math>P</math> are also called good. Suppose <math>P</math> has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of <math>P</math>. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.


==Problem 3==
==Problem 3==

Revision as of 19:13, 12 June 2015

Problem 1

Problem 2

Let $P$ be a regular 2006-gon. A diagonal of $P$ is called good if its endpoints divide the boundary of $P$ into two parts, each composed of an odd number of sides of $P$. The sides of $P$ are also called good. Suppose $P$ has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of $P$. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

Problem 3

Problem 4

Problem 5

Problem 6

See Also