2015 AMC 10B Problems/Problem 22: Difference between revisions
Created page with "Solution Triangle <math>AFG</math> is isosceles so <math>AG</math>=<math>AF</math>=<math>1</math>. Using the symmetry of pentagon <math>FGHIJ</math>, notice that <math>\angl..." |
Formatting, heavy phrasing edit, added "problem" and "see also" sections, removed "solution by..." |
||
| Line 1: | Line 1: | ||
==Problem== | |||
In the figure shown below, <math>ABCDE</math> is a regular pentagon and <math>AG=1</math>. What is <math>FG + JH + CD</math>? | |||
<asy> | |||
pair A=(cos(pi/5)-sin(pi/10),cos(pi/10)+sin(pi/5)), B=(2*cos(pi/5)-sin(pi/10),cos(pi/10)), C=(1,0), D=(0,0), E1=(-sin(pi/10),cos(pi/10)); | |||
//(0,0) is a convenient point | |||
//E1 to prevent conflict with direction E(ast) | |||
pair F=intersectionpoints(D--A,E1--B)[0], G=intersectionpoints(A--C,E1--B)[0], H=intersectionpoints(B--D,A--C)[0], I=intersectionpoints(C--E1,D--B)[0], J=intersectionpoints(E1--C,D--A)[0]; | |||
draw(A--B--C--D--E1--A); | |||
draw(A--D--B--E1--C--A); | |||
draw(F--I--G--J--H--F); | |||
label("$A$",A,N); | |||
label("$B$",B,E); | |||
label("$C$",C,SE); | |||
label("$D$",D,SW); | |||
label("$E$",E1,W); | |||
label("$F$",F,NW); | |||
label("$G$",G,NE); | |||
label("$H$",H,E); | |||
label("$I$",I,S); | |||
label("$J$",J,W); | |||
</asy> | |||
==Solution== | |||
< | Triangle <math>AFG</math> is isosceles, so <math>AG=AF=1</math>. Using the symmetry of pentagon <math>FGHIJ</math>, notice that <math>\triangle IGF \cong \triangle JHG \cong \triangle DIJ \cong AFG</math>. Therefore, <math>JH=AF=1</math>. | ||
From this, we get <math> | Since <math>\triangle AJH \sim \triangle AFG</math>, <math>\frac{JH}{AF+FJ}=\frac{1}{1+FG}=\frac{FG}{FI}=\frac{FG}1</math>. From this, we get <math>FG=\frac{\sqrt{5} -1}{2}</math>. | ||
Since <math>\triangle DIJ \cong \triangle AFG</math>, <math>DJ=DI=AF=1</math>. Since <math>\triangle AFG \sim ADC</math>, <math> \frac{AF}{AF+FJ+JD}=\frac1{2+FG} = \frac{FG}{CD}=\frac1{CD}</math>. Solving for <math>CD</math>, we get <math>CD = \frac{\sqrt{5} +1}{2}</math> | |||
< | Therefore, <math>FG+JH+CD=\frac{\sqrt5-1}2+1+\frac{\sqrt5+1}2=\boxed{\mathbf{(D)}\ 1+\sqrt{5}\ }</math> | ||
==See Also== | |||
{{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}} | |||
{{MAA Notice}} | |||
Revision as of 22:48, 16 March 2015
Problem
In the figure shown below,
is a regular pentagon and
. What is
?
Solution
Triangle
is isosceles, so
. Using the symmetry of pentagon
, notice that
. Therefore,
.
Since
,
. From this, we get
.
Since
,
. Since
,
. Solving for
, we get
Therefore,
See Also
| 2015 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.