Art of Problem Solving

2001 AIME I Problems/Problem 11: Difference between revisions

No edit summary
Line 3: Line 3:


== Solution ==
== Solution ==
Let each point <math>P_i</math> be in column <math>c_i</math>. The numberings for <math>P_i</math> can now be defined as follows.
<cmath>\begin{align*}x_i &= (i - 1)N + c_i\\
y_i &= (c_i - 1)5 + i
\end{align*}</cmath>
We can now convert the five given equalities.
<cmath>\begin{align}x_1&=y_2 & \Longrightarrow & & c_1 &= 5 c_2-3\\
x_2&=y_1 & \Longrightarrow & & N+c_2 &= 5 c_1-4\\
x_3&=y_4 & \Longrightarrow & & 2 N+c_3 &= 5 c_4-1\\
x_4&=y_5 & \Longrightarrow & & 3 N+c_4 &= 5 c_5\\
x_5&=y_3 & \Longrightarrow & & 4 N+c_5 &= 5 c_3-2
\end{align}</cmath>
Equations <math>(1)</math> and <math>(2)</math> combine to form
<cmath>N = 24c_2 - 19</cmath>
Similarly equations <math>(3)</math>, <math>(4)</math>, and <math>(5)</math> combine to form
<cmath>117N +51 = 124c_3</cmath>
Take this equation modulo 31
<cmath>24N+20\equiv 0 \pmod{31}</cmath>
And substitute for N
<cmath>24 \cdot 24 c_2 - 24 \cdot 19 +20\equiv 0 \pmod{31}</cmath>
<cmath>18 c_2 \equiv 2 \pmod{31}</cmath>
Thus the smallest <math>c_2</math> might be is <math>7</math> and by substitution <math>N = 24 \cdot 7 - 19 = 149</math>
The column values can also easily be found by substitution
<cmath>\begin{align*}c_1&=32\\
c_2&=7\\
c_3&=141\\
c_4&=88\\
c_5&=107
\end{align*}</cmath>
As these are all positive and less than <math>N</math>, <math>\boxed{149}</math> is the solution.


== See also ==
== See also ==

Revision as of 13:25, 8 May 2014

Problem

In a rectangular array of points, with 5 rows and $N$ columns, the points are numbered consecutively from left to right beginning with the top row. Thus the top row is numbered 1 through $N,$ the second row is numbered $N + 1$ through $2N,$ and so forth. Five points, $P_1, P_2, P_3, P_4,$ and $P_5,$ are selected so that each $P_i$ is in row $i.$ Let $x_i$ be the number associated with $P_i.$ Now renumber the array consecutively from top to bottom, beginning with the first column. Let $y_i$ be the number associated with $P_i$ after the renumbering. It is found that $x_1 = y_2,$ $x_2 = y_1,$ $x_3 = y_4,$ $x_4 = y_5,$ and $x_5 = y_3.$ Find the smallest possible value of $N.$

Solution

Let each point $P_i$ be in column $c_i$. The numberings for $P_i$ can now be defined as follows. \begin{align*}x_i &= (i - 1)N + c_i\\ y_i &= (c_i - 1)5 + i \end{align*}

We can now convert the five given equalities. \begin{align}x_1&=y_2 & \Longrightarrow & & c_1 &= 5 c_2-3\\ x_2&=y_1 & \Longrightarrow & & N+c_2 &= 5 c_1-4\\ x_3&=y_4 & \Longrightarrow & & 2 N+c_3 &= 5 c_4-1\\ x_4&=y_5 & \Longrightarrow & & 3 N+c_4 &= 5 c_5\\ x_5&=y_3 & \Longrightarrow & & 4 N+c_5 &= 5 c_3-2 \end{align} Equations $(1)$ and $(2)$ combine to form \[N = 24c_2 - 19\] Similarly equations $(3)$, $(4)$, and $(5)$ combine to form \[117N +51 = 124c_3\] Take this equation modulo 31 \[24N+20\equiv 0 \pmod{31}\] And substitute for N \[24 \cdot 24 c_2 - 24 \cdot 19 +20\equiv 0 \pmod{31}\] \[18 c_2 \equiv 2 \pmod{31}\]

Thus the smallest $c_2$ might be is $7$ and by substitution $N = 24 \cdot 7 - 19 = 149$

The column values can also easily be found by substitution \begin{align*}c_1&=32\\ c_2&=7\\ c_3&=141\\ c_4&=88\\ c_5&=107 \end{align*} As these are all positive and less than $N$, $\boxed{149}$ is the solution.

See also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.