2014 USAJMO Problems/Problem 2: Difference between revisions
| Line 6: | Line 6: | ||
(b) Line <math>OH</math> intersects segments <math>AB</math> and <math>AC</math> at <math>P</math> and <math>Q</math>, respectively. Denote by <math>s</math> and <math>t</math> the respective areas of triangle <math>APQ</math> and quadrilateral <math>BPQC</math>. Determine the range of possible values for <math>s/t</math>. | (b) Line <math>OH</math> intersects segments <math>AB</math> and <math>AC</math> at <math>P</math> and <math>Q</math>, respectively. Denote by <math>s</math> and <math>t</math> the respective areas of triangle <math>APQ</math> and quadrilateral <math>BPQC</math>. Determine the range of possible values for <math>s/t</math>. | ||
==Solution== | ==Solution== | ||
<asy> | |||
import olympiad; | |||
unitsize(1inch); | |||
pair A,B,C,O,H,P,Q,i1,i2,i3,i4; | |||
//define dots | |||
A=3*dir(50); | |||
B=(0,0); | |||
C=right*2.76481496; | |||
O=circumcenter(A,B,C); | |||
H=orthocenter(A,B,C); | |||
i1=2*O-H; | |||
i2=2*i1-O; | |||
i3=2*H-O; | |||
i4=2*i3-H; | |||
//These points are for extending PQ. DO NOT DELETE! | |||
P=intersectionpoint(i2--i4,A--B); | |||
Q=intersectionpoint(i2--i4,A--C); | |||
//draw | |||
dot(P); | |||
dot(Q); | |||
draw(P--Q); | |||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(O); | |||
dot(H); | |||
draw(A--B--C--cycle); | |||
//label | |||
label("$A$",A,N); | |||
label("$B$",B,SW); | |||
label("$C$",C,SE); | |||
label("$P$",P,NW); | |||
label("$Q$",Q,NE); | |||
label("$O$",O,N); | |||
label("$H$",H,N); | |||
//change O and H label positions if interfering with other lines to be added | |||
//further editing: ABCPQOH are the dots to be further used. i1,i2,i3,i4 are for drawing assistence and are not to be used | |||
</asy> | |||
Revision as of 18:21, 30 April 2014
Problem
Let
be a non-equilateral, acute triangle with $\angle A=60\textdegrees$ (Error compiling LaTeX. Unknown error_msg), and let
and
denote the circumcenter and orthocenter of
, respectively.
(a) Prove that line
intersects both segments
and
.
(b) Line
intersects segments
and
at
and
, respectively. Denote by
and
the respective areas of triangle
and quadrilateral
. Determine the range of possible values for
.
Solution