2014 USAJMO Problems/Problem 1: Difference between revisions
No edit summary |
|||
| Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
Notice <math>\dfrac{10a^2 - 5a + 1}{a^2 - 5a + 10} \le a^3</math> rearranges to <math>(a-1)^5 \ge 0</math>, obvious. Therefore <cmath> \left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right ) \le (abc)^3 </cmath> so <cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. </cmath> | Notice <math>\dfrac{10a^2 - 5a + 1}{a^2 - 5a + 10} \le a^3</math> rearranges to <math>(a-1)^5 \ge 0</math>, obvious. Therefore <cmath> \left(\frac{10a^2-5a+1}{b^2-5b+10}\right)\left(\frac{10b^2-5b+1}{c^2-5c+10}\right)\left(\frac{10c^2-5c+1}{a^2-5a+10}\right ) \le (abc)^3 </cmath> so <cmath> \min\left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. </cmath> | ||
Revision as of 17:35, 29 April 2014
Problem
Let
,
,
be real numbers greater than or equal to
. Prove that
Solution
Notice
rearranges to
, obvious. Therefore
so