1962 AHSME Problems/Problem 17: Difference between revisions
No edit summary |
|||
| Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
{{ | Using the change-of-base rule: <math>a = \frac{\log 225}{\log 8}</math> and <math>b = \frac{\log 15}{\log 2}</math>. | ||
<cmath>\frac{a}b = \frac{\log 225 \log 2}{\log 8 \log 15}</cmath> | |||
<cmath>a = b \dot \frac{\log 225 \log 15} \dot \frac{\log 2 \log 8}</cmath> | |||
<cmath>a = b \log_{15} 225 \log_8 2</cmath> | |||
<cmath>a = \boxed{\frac{2b}3 \textbf{ (B)}}</cmath> | |||
Revision as of 09:31, 17 April 2014
Problem
If
and
, then
, in terms of
, is:
Solution
Using the change-of-base rule:
and
.
\[a = b \dot \frac{\log 225 \log 15} \dot \frac{\log 2 \log 8}\] (Error compiling LaTeX. Unknown error_msg)