Art of Problem Solving

2014 AIME II Problems/Problem 14: Difference between revisions

Gamjawon (talk | contribs)
No edit summary
Gamjawon (talk | contribs)
No edit summary
Line 1: Line 1:
14. In △ABC, AB=10, ∠A=30∘, and ∠C=45∘. Let H, D, and M be points on the line BC such that AH⊥BC, ∠BAD=∠CAD, and <math>BM=CM</math>. Point <math>N</math> is the midpoint of the segment <math>HM</math>, and point <math>P</math> is on ray <math>AD</math> such that PN⊥BC. Then <math>AP^2=\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
14. In △ABC, AB=10, ∠A=30∘, and ∠C=45∘. Let H, D, and M be points on the line BC such that AH⊥BC, ∠BAD=∠CAD, and <math>BM=CM</math>. Point <math>N</math> is the midpoint of the segment <math>HM</math>, and point <math>P</math> is on ray <math>AD</math> such that PN⊥BC. Then <math>AP^2=\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.


[img] http://www.artofproblemsolving.com/Wiki/images/5/59/AOPS_wiki.PNG [/img]
http://www.artofproblemsolving.com/Wiki/images/5/59/AOPS_wiki.PNG ( This is the diagram.)

Revision as of 21:26, 29 March 2014

14. In △ABC, AB=10, ∠A=30∘, and ∠C=45∘. Let H, D, and M be points on the line BC such that AH⊥BC, ∠BAD=∠CAD, and $BM=CM$. Point $N$ is the midpoint of the segment $HM$, and point $P$ is on ray $AD$ such that PN⊥BC. Then $AP^2=\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

http://www.artofproblemsolving.com/Wiki/images/5/59/AOPS_wiki.PNG ( This is the diagram.)