Art of Problem Solving

2014 AMC 10B Problems/Problem 21: Difference between revisions

DivideBy0 (talk | contribs)
Solution: removed solution by -----
DivideBy0 (talk | contribs)
Solution: fixed diagrams
Line 5: Line 5:


==Solution==
==Solution==
<asy>
<asy>
draw((0,0)--(33,0)--(23, -9.79795897)--(2, -9.79795897)--(0,0));
size(7cm);
label("A", (0,0), NW);
pair A,B,C,D,CC,DD;
label("B", (33,0), NE);
A = (-2,7);
label("C", (23,-9.79795897), SE);
B = (14,7);
label("D", (2, -9.79795897), SW);
C = (10,0);
draw((2, 0)--(2, -9.79795897));
D = (0,0);
draw((23, 0)--(23,-9.79795897));
CC = (10,7);
label("E", (2,0), N);
DD = (0,7);
label("F", (23,0), N);
draw(A--B--C--D--cycle);
//label("33",(A+B)/2,N);
label("21",(C+D)/2,S);
label("10",(A+D)/2,W);
label("14",(B+C)/2,E);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
draw(C--CC); draw(D--DD);
</asy>
</asy>


Line 24: Line 34:
\\h^2 &= 196-(12-x)^2\end{align}</math>.
\\h^2 &= 196-(12-x)^2\end{align}</math>.


Setting these equal, we have <math>100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2</math>. Now, we can determine that <math>h^2 = 100-4 \implies h = \sqrt{96}</math>. The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Obviously, <math>25</math> is the shorter length, and thus the answer is <math>\boxed{\textbf{(B) }25}</math>.
Setting these equal, we have <math>100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2</math>. Now, we can determine that <math>h^2 = 100-4 \implies h = \sqrt{96}</math>.
 
<asy>
size(7cm);
pair A,B,C,D,CC,DD;
A = (-2,7);
B = (14,7);
C = (10,0);
D = (0,0);
CC = (10,7);
DD = (0,7);
draw(A--B--C--D--cycle);
//label("33",(A+B)/2,N);
label("21",(C+D)/2,S);
label("10",(A+D)/2,W);
label("14",(B+C)/2,E);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
draw(C--CC); draw(D--DD);
label("21",(CC+DD)/2,N);
label("$2$",(A+DD)/2,N);
label("$8$",(CC+B)/2,N);
label("$\sqrt{96}$",(C+CC)/2,W);
label("$\sqrt{96}$",(D+DD)/2,E);
pair X = (-2,0);
//draw(X--C--A--cycle,black+2bp);
</asy>
 
The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Obviously, <math>25</math> is the shorter length, and thus the answer is <math>\boxed{\textbf{(B) }25}</math>.


==See Also==
==See Also==
{{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}}
{{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 19:17, 20 February 2014

Problem

Trapezoid $ABCD$ has parallel sides $\overline{AB}$ of length $33$ and $\overline {CD}$ of length $21$. The other two sides are of lengths $10$ and $14$. The angles $A$ and $B$ are acute. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }10\sqrt{6}\qquad\textbf{(B) }25\qquad\textbf{(C) }8\sqrt{10}\qquad\textbf{(D) }18\sqrt{2}\qquad\textbf{(E) }26$

Solution

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); draw(C--CC); draw(D--DD); [/asy]

In the diagram, $\overline{DE} \perp \overline{AB}, \overline{FC} \perp \overline{AB}$. Denote $\overline{AE} = x$ and $\overline{DE} = h$. In right triangle $AED$, we have from the Pythagorean theorem: $x^2+h^2=100$. Note that since $EF = DC$, we have $BF = 33-DC-x = 12-x$. Using the Pythagorean theorem in right triangle $BFC$, we have $(12-x)^2 + h^2 = 196$.


We isolate the $h^2$ term in both equations, getting $\begin{align*}h^2 &= 100-x^2 \\h^2 &= 196-(12-x)^2\end{align}$ (Error compiling LaTeX. Unknown error_msg).

Setting these equal, we have $100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2$. Now, we can determine that $h^2 = 100-4 \implies h = \sqrt{96}$.

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); draw(C--CC); draw(D--DD); label("21",(CC+DD)/2,N); label("$2$",(A+DD)/2,N); label("$8$",(CC+B)/2,N); label("$\sqrt{96}$",(C+CC)/2,W); label("$\sqrt{96}$",(D+DD)/2,E); pair X = (-2,0); //draw(X--C--A--cycle,black+2bp); [/asy]

The two diagonals are $\overline{AC}$ and $\overline{BD}$. Using the Pythagorean theorem again on $\bigtriangleup AFC$ and $\bigtriangleup BED$, we can find these lengths to be $\sqrt{96+529} = 25$ and $\sqrt{96+961} = \sqrt{1057}$. Obviously, $25$ is the shorter length, and thus the answer is $\boxed{\textbf{(B) }25}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.