2014 AMC 10B Problems/Problem 21: Difference between revisions
→Solution: removed solution by ----- |
→Solution: fixed diagrams |
||
| Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
size(7cm); | |||
label(" | pair A,B,C,D,CC,DD; | ||
label(" | A = (-2,7); | ||
label(" | B = (14,7); | ||
label(" | C = (10,0); | ||
D = (0,0); | |||
CC = (10,7); | |||
label(" | DD = (0,7); | ||
label(" | draw(A--B--C--D--cycle); | ||
//label("33",(A+B)/2,N); | |||
label("21",(C+D)/2,S); | |||
label("10",(A+D)/2,W); | |||
label("14",(B+C)/2,E); | |||
label("$A$",A,NW); | |||
label("$B$",B,NE); | |||
label("$C$",C,SE); | |||
label("$D$",D,SW); | |||
draw(C--CC); draw(D--DD); | |||
</asy> | </asy> | ||
| Line 24: | Line 34: | ||
\\h^2 &= 196-(12-x)^2\end{align}</math>. | \\h^2 &= 196-(12-x)^2\end{align}</math>. | ||
Setting these equal, we have <math>100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2</math>. Now, we can determine that <math>h^2 = 100-4 \implies h = \sqrt{96}</math>. The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Obviously, <math>25</math> is the shorter length, and thus the answer is <math>\boxed{\textbf{(B) }25}</math>. | Setting these equal, we have <math>100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2</math>. Now, we can determine that <math>h^2 = 100-4 \implies h = \sqrt{96}</math>. | ||
<asy> | |||
size(7cm); | |||
pair A,B,C,D,CC,DD; | |||
A = (-2,7); | |||
B = (14,7); | |||
C = (10,0); | |||
D = (0,0); | |||
CC = (10,7); | |||
DD = (0,7); | |||
draw(A--B--C--D--cycle); | |||
//label("33",(A+B)/2,N); | |||
label("21",(C+D)/2,S); | |||
label("10",(A+D)/2,W); | |||
label("14",(B+C)/2,E); | |||
label("$A$",A,NW); | |||
label("$B$",B,NE); | |||
label("$C$",C,SE); | |||
label("$D$",D,SW); | |||
draw(C--CC); draw(D--DD); | |||
label("21",(CC+DD)/2,N); | |||
label("$2$",(A+DD)/2,N); | |||
label("$8$",(CC+B)/2,N); | |||
label("$\sqrt{96}$",(C+CC)/2,W); | |||
label("$\sqrt{96}$",(D+DD)/2,E); | |||
pair X = (-2,0); | |||
//draw(X--C--A--cycle,black+2bp); | |||
</asy> | |||
The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Obviously, <math>25</math> is the shorter length, and thus the answer is <math>\boxed{\textbf{(B) }25}</math>. | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | {{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 19:17, 20 February 2014
Problem
Trapezoid
has parallel sides
of length
and
of length
. The other two sides are of lengths
and
. The angles
and
are acute. What is the length of the shorter diagonal of
?
Solution
In the diagram,
.
Denote
and
. In right triangle
, we have from the Pythagorean theorem:
. Note that since
, we have
. Using the Pythagorean theorem in right triangle
, we have
.
We isolate the
term in both equations, getting $\begin{align*}h^2 &= 100-x^2
\\h^2 &= 196-(12-x)^2\end{align}$ (Error compiling LaTeX. Unknown error_msg).
Setting these equal, we have
. Now, we can determine that
.
The two diagonals are
and
. Using the Pythagorean theorem again on
and
, we can find these lengths to be
and
. Obviously,
is the shorter length, and thus the answer is
.
See Also
| 2014 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.