Art of Problem Solving

2005 Canadian MO Problems/Problem 4: Difference between revisions

1=2 (talk | contribs)
A better incomplete solution.
No edit summary
Line 1: Line 1:
==Problem==
==Incomplete Solution==
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>.
 
==Solution==
Let the sides of triangle <math>ABC</math> be <math>a</math>, <math>b</math>, and <math>c</math>. Thus <math>\dfrac{abc}{4K}=R</math>, and <math>a+b+c=P</math>. We plug these in:
Let the sides of triangle <math>ABC</math> be <math>a</math>, <math>b</math>, and <math>c</math>. Thus <math>\dfrac{abc}{4K}=R</math>, and <math>a+b+c=P</math>. We plug these in:


Line 11: Line 8:
<cmath>\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}</cmath>
<cmath>\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}</cmath>


{{incomplete|solution}}
==Solution Outline==
^hahahaha... you can probably use Ravi Sub. to finish the above.


==See also==
OR
{{CanadaMO box|year=2005|num-b=3|num-a=5}}


[[Category:Olympiad Geometry Problems]]
Use the formula <math>K=\dfrac{abc}{4R}</math> to get <math>KP/R^3=\dfrac{abc(a+b+c)}{4R^4}</math>.  Then use the extended sine law to get something in terms of sines, and use AM-GM and Jensen's to finish.  (Jensen's is used for <math>\sin A+\sin B+\sin C \le \dfrac{3\sqrt3}{2}</math>.

Revision as of 12:37, 25 October 2013

Incomplete Solution

Let the sides of triangle $ABC$ be $a$, $b$, and $c$. Thus $\dfrac{abc}{4K}=R$, and $a+b+c=P$. We plug these in:

$\dfrac{K(a+b+c)}{\dfrac{a^3b^3c^3}{64K^3}}=\dfrac{64K^4(a+b+c)}{a^3b^3c^3}$.

Now Heron's formula states that $K=\sqrt{(\dfrac{a+b+c}{2})(\dfrac{-a+b+c}{2})(\dfrac{a-b+c}{2})(\dfrac{a+b-c}{2})}$. Thus,

\[\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}\]

Solution Outline

^hahahaha... you can probably use Ravi Sub. to finish the above.

OR

Use the formula $K=\dfrac{abc}{4R}$ to get $KP/R^3=\dfrac{abc(a+b+c)}{4R^4}$. Then use the extended sine law to get something in terms of sines, and use AM-GM and Jensen's to finish. (Jensen's is used for $\sin A+\sin B+\sin C \le \dfrac{3\sqrt3}{2}$.