2010 AMC 10A Problems/Problem 24: Difference between revisions
No edit summary |
Armalite46 (talk | contribs) |
||
| Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
We will use the fact that for any integer <math>n</math>, | We will use the fact that for any integer <math>n</math>, <cmath>\begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\ &=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\ &=24\pmod{25}\equiv -1\pmod{25}.\end{align*}</cmath> | ||
<cmath>\begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\ | |||
&=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\ | |||
&=24\pmod{25}\equiv -1\pmod{25}.\end{align*}</cmath> | |||
First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. | First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. | ||
If we divide <math>N</math> by <math>5^{21} | If we divide <math>N</math> by <math>5^{21}</math> , we can write <math>N</math> as <math>\frac M{2^{21}}</math> where <cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> where every number in the form <math>(5^a)*n</math> is replaced by <math>n</math>. | ||
<cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | |||
where | |||
The number <math>M</math> can be grouped as follows: | The number <math>M</math> can be grouped as follows: | ||
<cmath>\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\ | <cmath>\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\ &\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\ &\cdot (1\cdot 2\cdot 3).\end{align*}</cmath> | ||
&\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\ | |||
&\cdot (1\cdot 2\cdot 3).\end{align*}</cmath> | |||
Hence, we can reduce <math>M</math> to | |||
<cmath>\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\ | <cmath>\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\ &= 1\cdot -21\cdot 6\\ &= -1\pmod{25} =24\pmod{25}.\end{align*}</cmath> | ||
&= 1\cdot -21\cdot 6\\ | |||
&= -1\pmod{25} =24\pmod{25}.\end{align*}</cmath> | |||
Using the fact that <math>2^{10}=1024\equiv -1\pmod{25}</math> | Using the fact that <math>2^{10}=1024\equiv -1\pmod{25}</math>,we can deduce that <math>2^{21}\equiv 2\pmod{25}</math>. Therefore <math>N=\frac M{2^{21}}\equiv \frac {24}2\pmod{25}=12\pmod{25}</math>. | ||
Finally, combining with the fact that <math>N\equiv 0\pmod 4</math> yields <math>n=\boxed{\textbf{(A)}\ 12}</math>. | Finally, combining with the fact that <math>N\equiv 0\pmod 4</math> yields <math>n=\boxed{\textbf{(A)}\ 12}</math>. | ||
Revision as of 20:07, 3 September 2013
Problem
The number obtained from the last two nonzero digits of
is equal to
. What is
?
Solution
We will use the fact that for any integer
,
First, we find that the number of factors of
in
is equal to
. Let
. The
we want is therefore the last two digits of
, or
. Since there is clearly an excess of factors of 2, we know that
, so it remains to find
.
If we divide
by
, we can write
as
where
where every number in the form
is replaced by
.
The number
can be grouped as follows:
Hence, we can reduce
to
Using the fact that
,we can deduce that
. Therefore
.
Finally, combining with the fact that
yields
.
See also
| 2010 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.