Mock AIME II 2012 Problems/Problem 1: Difference between revisions
Created page with "== Problem== Given that <cmath>\left(\dfrac{6^2-1}{6^2+11}\right)\left(\dfrac{7^2-2}{7^2+12}\right)\left(\dfrac{8^2-3}{8^2+13}\right)\cdots\left(\dfrac{2012^2-2007}{2012^2+2017}\..." |
Jweisblat14 (talk | contribs) |
||
| Line 8: | Line 8: | ||
<cmath>\frac{6^2-1}{2012^2+2017}</cmath> | <cmath>\frac{6^2-1}{2012^2+2017}</cmath> | ||
Note that <math>5|(6^2-1)</math> however <math>2012^2+2017\equiv 4+2\equiv 1\pmod{5}</math>. Also, note that <math>7|(6^2-1)</math> however <math>2012^2+2017\equiv 25+4\equiv 1\pmod{7}</math>. Since <math>6^2-1=5*7</math>, we know that <math>\gcd(6^2-1, 2012^2+2017)=1</math>. Now note that we want <math>35+2012^2+2017 \pmod{1000}</math>, therefore we use <math>2012^2\equiv 12\pmod{1000}</math> and <math>2017\equiv 17\pmod{1000}</math> to give us <math>m+n=35+144+17=\boxed{196}\pmod{1000}</math>. | Note that <math>5|(6^2-1)</math> however <math>2012^2+2017\equiv 4+2\equiv 1\pmod{5}</math>. Also, note that <math>7|(6^2-1)</math> however <math>2012^2+2017\equiv 25+4\equiv 1\pmod{7}</math>. Since <math>6^2-1=5*7</math>, we know that <math>\gcd(6^2-1, 2012^2+2017)=1</math>. Now note that we want <math>35+2012^2+2017 \pmod{1000}</math>, therefore we use <math>2012^2\equiv 12^2\pmod{1000}</math> and <math>2017\equiv 17\pmod{1000}</math> to give us <math>m+n=35+144+17=\boxed{196}\pmod{1000}</math>. | ||
Latest revision as of 08:53, 13 March 2013
Problem
Given that
where
and
are positive relatively prime integers, find the remainder when
is divided by
.
Solution
Consider
. We note that
, thus we have a telescoping sequence and we need only consider the first numerator and last denominator.
Note that
however
. Also, note that
however
. Since
, we know that
. Now note that we want
, therefore we use
and
to give us
.