2013 AMC 12A Problems/Problem 1: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | |||
Square <math> ABCD </math> has side length <math> 10 </math>. Point <math> E </math> is on <math> \overline{BC} </math>, and the area of <math> \bigtriangleup ABE </math> is <math> 40 </math>. What is <math> BE </math>? | |||
<math>\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8 \qquad </math> | |||
<asy> | |||
pair A,B,C,D,E; | |||
A=(0,0); | |||
B=(0,50); | |||
C=(50,50); | |||
D=(50,0); | |||
E = (30,50); | |||
draw(A--B); | |||
draw(B--E); | |||
draw(E--C); | |||
draw(C--D); | |||
draw(D--A); | |||
draw(A--E); | |||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(D); | |||
dot(E); | |||
label("A",A,SW); | |||
label("B",B,NW); | |||
label("C",C,NE); | |||
label("D",D,SE); | |||
label("E",E,N); | |||
</asy> | |||
==Solution== | |||
We are given that the area of <math>\triangle ABE</math> is <math>40</math>, and that <math>AB = 10</math>. | We are given that the area of <math>\triangle ABE</math> is <math>40</math>, and that <math>AB = 10</math>. | ||
| Line 12: | Line 46: | ||
<math>b = 8</math>, which is <math>E</math> | <math>b = 8</math>, which is <math>E</math> | ||
== See also == | |||
{{AMC12 box|year=2013|ab=A|before=First Question|num-a=2}} | |||
Revision as of 17:25, 22 February 2013
Problem
Square
has side length
. Point
is on
, and the area of
is
. What is
?
Solution
We are given that the area of
is
, and that
.
The area of a triangle:
Using
as the height of
,
and solving for b,
, which is
See also
| 2013 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by First Question |
Followed by Problem 2 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |