Mock AIME 2 2006-2007 Problems/Problem 10: Difference between revisions
| Line 12: | Line 12: | ||
As <math>x</math> is real, <math>\cos^22x\ge 0\implies \cos^22x=\frac12\implies 2\cos^22x=1</math> | As <math>x</math> is real, <math>\cos^22x\ge 0\implies \cos^22x=\frac12\implies 2\cos^22x=1</math> | ||
Hence, <math>\cos4x=0\implies 4x=(2n+1)90^\circ</math> where <math>n</math> is any integer. | Hence, <math>\cos4x=0\implies 4x=(2n+1)90^\circ</math> or <math>x=(2n+1)22.5^\circ</math> where <math>n</math> is any integer. | ||
So, <math>0\le (2n+1)90\le2007\implies -\frac12\le n\le \frac{ | So, <math>0\le \frac{(2n+1)90}4\le2007\implies -\frac12\le n\le \frac{882}{20}<45\implies 0\le n\le44</math> | ||
==See Also== | ==See Also== | ||
{{Mock AIME box|year=2006-2007|n=2|num-b=9|num-a=11}} | {{Mock AIME box|year=2006-2007|n=2|num-b=9|num-a=11}} | ||
Revision as of 12:43, 31 January 2013
Problem
Find the number of solutions, in degrees, to the equation
where
Solution
We know
So,
On Simplification,
So,
or
As
is real,
Hence,
or
where
is any integer.
So,
See Also
| Mock AIME 2 2006-2007 (Problems, Source) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||