Art of Problem Solving

2002 AMC 8 Problems/Problem 24: Difference between revisions

Mrdavid445 (talk | contribs)
Created page with "Miki has a dozen oranges of the same size and a dozen pears of the same size. Miki uses her juicer to extract 8 ounces of pear juice from 3 pears and 8 ounces of orange juice fro..."
 
Gina (talk | contribs)
No edit summary
Line 1: Line 1:
==Problem==
Miki has a dozen oranges of the same size and a dozen pears of the same size. Miki uses her juicer to extract 8 ounces of pear juice from 3 pears and 8 ounces of orange juice from 2 oranges. She makes a pear-orange juice blend from an equal number of pears and oranges. What percent of the blend is pear juice?
Miki has a dozen oranges of the same size and a dozen pears of the same size. Miki uses her juicer to extract 8 ounces of pear juice from 3 pears and 8 ounces of orange juice from 2 oranges. She makes a pear-orange juice blend from an equal number of pears and oranges. What percent of the blend is pear juice?


<math> \text{(A)}\ 30\qquad\text{(B)}\ 40\qquad\text{(C)}\ 50\qquad\text{(D)}\ 60\qquad\text{(E)}\ 70 </math>
<math> \text{(A)}\ 30\qquad\text{(B)}\ 40\qquad\text{(C)}\ 50\qquad\text{(D)}\ 60\qquad\text{(E)}\ 70 </math>
==Solution==
A pear gives <math>8/3</math> ounces of juice per pear. An orange gives <math>8/2=4</math> ounces of juice per orange. If the pear-orange juice blend used one pear and one orange each, the percentage of pear juice would be
<cmath>\frac{8/3}{8/3+4} \times 100 = \frac{8}{8+12} \times 100  = \boxed{\text{(B)}\ 40}</cmath>
==See Also==
{{AMC8 box|year=2002|num-b=23|num-a=25}}

Revision as of 19:32, 23 December 2012

Problem

Miki has a dozen oranges of the same size and a dozen pears of the same size. Miki uses her juicer to extract 8 ounces of pear juice from 3 pears and 8 ounces of orange juice from 2 oranges. She makes a pear-orange juice blend from an equal number of pears and oranges. What percent of the blend is pear juice?

$\text{(A)}\ 30\qquad\text{(B)}\ 40\qquad\text{(C)}\ 50\qquad\text{(D)}\ 60\qquad\text{(E)}\ 70$

Solution

A pear gives $8/3$ ounces of juice per pear. An orange gives $8/2=4$ ounces of juice per orange. If the pear-orange juice blend used one pear and one orange each, the percentage of pear juice would be

\[\frac{8/3}{8/3+4} \times 100 = \frac{8}{8+12} \times 100  = \boxed{\text{(B)}\ 40}\]

See Also

2002 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions