2002 AIME I Problems/Problem 13: Difference between revisions
asy |
|||
| Line 2: | Line 2: | ||
In [[triangle]] <math>ABC</math> the [[median]]s <math>\overline{AD}</math> and <math>\overline{CE}</math> have lengths <math>18</math> and <math>27</math>, respectively, and <math>AB=24</math>. Extend <math>\overline{CE}</math> to intersect the [[circumcircle]] of <math>ABC</math> at <math>F</math>. The area of triangle <math>AFB</math> is <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | In [[triangle]] <math>ABC</math> the [[median]]s <math>\overline{AD}</math> and <math>\overline{CE}</math> have lengths <math>18</math> and <math>27</math>, respectively, and <math>AB=24</math>. Extend <math>\overline{CE}</math> to intersect the [[circumcircle]] of <math>ABC</math> at <math>F</math>. The area of triangle <math>AFB</math> is <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | ||
== Solution == | == Solution 1== | ||
<center><asy> | <center><asy> | ||
size(150); pathpen = linewidth(0.7); pointpen = black; pen f = fontsize(8); pair A=(0,0), B=(24,0), E=(A+B)/2, C=IP(CR(A,3*70^.5),CR(E,27)), D=(B+C)/2, F=IP(circumcircle(A,B,C),E--C+2*(E-C)); | size(150); pathpen = linewidth(0.7); pointpen = black; pen f = fontsize(8); pair A=(0,0), B=(24,0), E=(A+B)/2, C=IP(CR(A,3*70^.5),CR(E,27)), D=(B+C)/2, F=IP(circumcircle(A,B,C),E--C+2*(E-C)); | ||
| Line 23: | Line 23: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
</center> | </center> | ||
Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>. | Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>. | ||
== Solution 2 == | |||
Let <math>AD</math> and <math>CE</math> intersect at <math>P</math> and construct median <math>BF</math>. Since medians split one another in a 2:1 ratio, we have | |||
<center> | |||
<cmath>\begin{align*} | |||
AP = 12, PE = 9 | |||
\end{align*}</cmath> | |||
</center> | |||
This gives isosceles <math>APE</math> and thus an easy area calculation. After extending the altitude to <math>PE</math> and using the fact that it is also a median, we find | |||
<center> | |||
<cmath>\begin{align*} | |||
[APE] = \frac{27\sqrt{55}}{4} | |||
\end{align*}</cmath> | |||
</center> | |||
Since <math>P</math> is the centroid, we have that | |||
<center> | |||
<cmath>\begin{align*} | |||
[CBE] = 3 [APE] = \frac{81\sqrt{55}}{4} | |||
\end{align*}</cmath> | |||
</center> | |||
Using Power of a Point, we have | |||
<center> | |||
<cmath>\begin{align*} | |||
EF=\frac{16}{3} | |||
\end{align*}</cmath> | |||
</center> | |||
By Same Height Different Base, | |||
<center> | |||
<cmath>\begin{align*} | |||
\frac{[EFB]}{[CBE]}=\frac{[EFB]}{(\frac{81\sqrt{55}}{4})}=\frac{(\frac{16}{3})}{27}=\frac{16}{81} | |||
\end{align*}</cmath> | |||
</center> | |||
Solving gives | |||
<center> | |||
<cmath>\begin{align*} | |||
[EFB] = 4\sqrt{55} | |||
\end{align*}</cmath> | |||
</center> | |||
and | |||
<center> | |||
<cmath>\begin{align*} | |||
[AFB]=2[EFB]=8\sqrt{55} | |||
\end{align*}</cmath> | |||
</center> | |||
Thus, our answer is <math>8+55=\boxed{063}</math>. | |||
'''-Solution by thecmd999''' | |||
== See also == | == See also == | ||
Revision as of 21:02, 28 August 2012
Problem
In triangle
the medians
and
have lengths
and
, respectively, and
. Extend
to intersect the circumcircle of
at
. The area of triangle
is
, where
and
are positive integers and
is not divisible by the square of any prime. Find
.
Solution 1
![[asy] size(150); pathpen = linewidth(0.7); pointpen = black; pen f = fontsize(8); pair A=(0,0), B=(24,0), E=(A+B)/2, C=IP(CR(A,3*70^.5),CR(E,27)), D=(B+C)/2, F=IP(circumcircle(A,B,C),E--C+2*(E-C)); D(D(MP("A",A))--D(MP("B",B))--D(MP("C",C,NW))--cycle); D(circumcircle(A,B,C)); D(MP("F",F)); D(A--D); D(C--F); D(A--F--B); D(MP("E",E,NE)); D(MP("D",D,NE)); MP("12",(A+E)/2,SE,f);MP("12",(B+E)/2,f); MP("27",(C+E)/2,SW,f); MP("18",(A+D)/2,SE,f); [/asy]](http://latex.artofproblemsolving.com/2/3/6/236d2c7ecccc097482080a6f0ffbf91d00c72995.png)
Applying Stewart's Theorem to medians
, we have:
Substituting the first equation into the second and simplification yields
.
By the Power of a Point Theorem on
, we get
. The Law of Cosines on
gives
Hence
. Because
have the same height and equal bases, they have the same area, and
, and the answer is
.
Solution 2
Let
and
intersect at
and construct median
. Since medians split one another in a 2:1 ratio, we have
This gives isosceles
and thus an easy area calculation. After extending the altitude to
and using the fact that it is also a median, we find
Since
is the centroid, we have that
Using Power of a Point, we have
By Same Height Different Base,
Solving gives
and
Thus, our answer is
.
-Solution by thecmd999
See also
| 2002 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||