2008 AMC 12A Problems/Problem 18: Difference between revisions
| Line 19: | Line 19: | ||
c^2+a^2 &=7^2 , | c^2+a^2 &=7^2 , | ||
\end{align*} </cmath> | \end{align*} </cmath> | ||
so <math>a^2 = (5^2+7^2-6^2)/2 = 19</math>; similarly, <math>b^2 = 6</math> and <math>c^2 = 30</math>. Since <math>OA</math>, <math>OB</math>, and <math>OC</math> are mutually perpendicular, the tetrahedron's volume is <cmath> abc/6</cmath> because | so <math>a^2 = (5^2+7^2-6^2)/2 = 19</math>; similarly, <math>b^2 = 6</math> and <math>c^2 = 30</math>. Since <math>OA</math>, <math>OB</math>, and <math>OC</math> are mutually perpendicular, the tetrahedron's volume is <cmath> abc/6</cmath> because we can consider the tetrahedron to be a right triangular pyramid. | ||
<cmath> abc/6 = \sqrt{a^2b^2c^2}/6 = \frac{\sqrt{19 \cdot 6 \cdot 30}}{6} = \sqrt{95}, </cmath> | <cmath> abc/6 = \sqrt{a^2b^2c^2}/6 = \frac{\sqrt{19 \cdot 6 \cdot 30}}{6} = \sqrt{95}, </cmath> | ||
which is answer choice C. <math>\blacksquare</math> | which is answer choice C. <math>\blacksquare</math> | ||
Revision as of 19:44, 5 February 2012
Problem
Triangle
, with sides of length
,
, and
, has one vertex on the positive
-axis, one on the positive
-axis, and one on the positive
-axis. Let
be the origin. What is the volume of tetrahedron
?
Solution
![[asy] defaultpen(fontsize(8)); draw((0,10)--(0,0)--(8,0));draw((-3,-4)--(0,0));draw((0,10)--(-3,-4)--(8,0)--cycle); label("A",(8,0),(1,0));label("B",(0,10),(0,1));label("C",(-3,-4),(-1,-1));label("O",(0,0),(1,1)); label("$a$",(4,0),(0,1));label("$b$",(0,5),(1,0));label("$c$",(-1.5,-2),(1,0)); label("$5$",(4,5),(1,1));label("$6$",(-1.5,3),(-1,0));label("$7$",(2.5,-2),(1,-1)); [/asy]](http://latex.artofproblemsolving.com/b/4/8/b48d9f2414f67d68d2e53886e0726e31626cd919.png)
Without loss of generality, let
be on the
axis,
be on the
axis, and
be on the
axis, and let
have respective lengths of 5, 6, and 7. Let
denote the lengths of segments
respectively. Then by the Pythagorean Theorem,
so
; similarly,
and
. Since
,
, and
are mutually perpendicular, the tetrahedron's volume is
because we can consider the tetrahedron to be a right triangular pyramid.
which is answer choice C.
See also
| 2008 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 17 |
Followed by Problem 19 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |