2011 AIME II Problems/Problem 15: Difference between revisions
Created page with 'Problem: Let <math>P(x) = x^2 - 3x - 9</math>. A real number <math>x</math> is chosen at random from the interval <math>5 \le x \le 15</math>. The probability that <math>\lfloor…' |
No edit summary |
||
| Line 1: | Line 1: | ||
Problem: | Problem: | ||
Let <math>P(x) = x^2 - 3x - 9</math>. A real number <math>x</math> is chosen at random from the interval <math>5 \le x \le 15</math>. The probability that <math>\lfloor\sqrt{P(x)}\rfloor = \sqrt{P(\lfloor x \rfloor)}</math> is equal to <math>\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} | Let <math>P(x) = x^2 - 3x - 9</math>. A real number <math>x</math> is chosen at random from the interval <math>5 \le x \le 15</math>. The probability that <math>\lfloor\sqrt{P(x)}\rfloor = \sqrt{P(\lfloor x \rfloor)}</math> is equal to <math>\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}{e}</math> , where <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, and <math>e</math> are positive integers, and none of <math>a</math>, <math>b</math>, or <math>c</math> is divisible by the square of a prime. Find <math>a + b + c + d + e</math>. | ||
---- | ---- | ||
Revision as of 17:17, 31 March 2011
Problem:
Let
. A real number
is chosen at random from the interval
. The probability that
is equal to
, where
,
,
,
, and
are positive integers, and none of
,
, or
is divisible by the square of a prime. Find
.
Solution:
Good luck people.