2010 AMC 10B Problems/Problem 13: Difference between revisions
No edit summary |
|||
| Line 15: | Line 15: | ||
== Solution == | == Solution == | ||
'''Case 1''': <math>2x-|60-2x|=x</math> | '''Case 1''': | ||
<math> | |||
2x-|60-2x|=x | |||
x=|60-2x| | |||
</math> | |||
''Case 1a'': | |||
<math> | |||
x=60-2x | |||
3x=60 | |||
x=20 | |||
</math> | |||
''Case 1b'': | |||
<math> | |||
-x=60-2x | |||
x=60 | |||
</math> | |||
'''Case 2''': | |||
<math> | |||
2x-|60-2x|=-x | |||
3x=|60-2x| | |||
</math> | |||
''Case 2a'': | |||
3x=60-2x | |||
5x=60 | |||
x=12 | |||
<math> | |||
''Case 2b'': | |||
</math> | |||
-3x=60-2x | |||
-x=60 | |||
x=-60 | |||
<math> | |||
Since an absolute value cannot be negative, we exclude </math>x=-60<math>. The answer is </math>20+60+12=92$ | |||
Revision as of 20:12, 24 January 2011
Problem
What is the sum of all the solutions of
?
Solution
Case 1:
Case 1a:
Case 1b:
Case 2:
Case 2a:
3x=60-2x
5x=60
x=12
-3x=60-2x
-x=60
x=-60
x=-60
20+60+12=92$