Art of Problem Solving

2000 AMC 10 Problems/Problem 15: Difference between revisions

5849206328x (talk | contribs)
mNo edit summary
Line 7: Line 7:
==Solution==
==Solution==


<center>
<math>\begin{align*}
<math>\begin{align*}
\frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\
\frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\
&= \frac{-a^2b^2+a^2+b^2}{ab}\\
&= \frac{-a^2b^2+a^2+b^2}{ab}\\
\end(align*}</math>
\end(align*}</math>
</center>


Substituting <math>ab=a-b</math>, we get
Substituting <math>ab=a-b</math>, we get


<center>
<math>\begin{align*}
<math>\begin{align*}
\frac{-(a+b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\
\frac{-(a-b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\
&= \frac{2ab}{ab} \\
&= \frac{2ab}{ab} \\
&= 2 \\
&= 2 \\
\end{align*}</math>
\end{align*}</math>
</center>


<math>\boxed{\text{E}}</math>
<math>\boxed{\text{E}}</math>
Note: the answer is B. Check your calculations when you're substituting.


==See Also==
==See Also==


{{AMC10 box|year=2000|num-b=14|num-a=16}}
{{AMC10 box|year=2000|num-b=14|num-a=16}}

Revision as of 14:45, 24 May 2010

Problem

Two non-zero real numbers, $a$ and $b$, satisfy $ab=a-b$. Find a possible value of $\frac{a}{b}+\frac{b}{a}-ab$.

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2$

Solution

$\begin{align*} \frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\ &= \frac{-a^2b^2+a^2+b^2}{ab}\\ \end(align*}$ (Error compiling LaTeX. Unknown error_msg)

Substituting $ab=a-b$, we get

$\begin{align*} \frac{-(a-b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\ &= \frac{2ab}{ab} \\ &= 2 \\ \end{align*}$ (Error compiling LaTeX. Unknown error_msg)

$\boxed{\text{E}}$

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions