Art of Problem Solving

2002 AMC 12B Problems/Problem 2: Difference between revisions

m s
 
5849206328x (talk | contribs)
No edit summary
Line 1: Line 1:
== Problem ==
== Problem ==
What is the value of
<cmath>(3x - 2)(4x + 1) - (3x - 2)4x + 1</cmath>


when <math>x=4</math>?
What is the value of  <math>(3x - 2)(4x + 1) - (3x - 2)4x + 1</math> when <math>x=4</math>?
 
<math>\mathrm{(A)}\ 0
<math>\mathrm{(A)}\ 0
\qquad\mathrm{(B)}\ 1
\qquad\mathrm{(B)}\ 1
Line 10: Line 9:
\qquad\mathrm{(E)}\ 12</math>
\qquad\mathrm{(E)}\ 12</math>
== Solution ==
== Solution ==
<cmath>(3x-2)[(4x+1)-4x] + 1 = 3x-2 + 1 = 3x-1 = 3(4) - 1 = 11\ \mathrm{(D)}</cmath>
<cmath>(3x-2)[(4x+1)-4x] + 1 = 3x-2 + 1 = 3x-1 = 3(4) - 1 = 11\ \mathrm{(D)}</cmath>



Revision as of 19:34, 22 May 2010

Problem

What is the value of $(3x - 2)(4x + 1) - (3x - 2)4x + 1$ when $x=4$?

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 10 \qquad\mathrm{(D)}\ 11 \qquad\mathrm{(E)}\ 12$

Solution

\[(3x-2)[(4x+1)-4x] + 1 = 3x-2 + 1 = 3x-1 = 3(4) - 1 = 11\ \mathrm{(D)}\]

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions