2006 Cyprus Seniors Provincial/2nd grade/Problem 3: Difference between revisions
m Prettier trig |
5849206328x (talk | contribs) m Fixed latex |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
If <math>\ | If <math>\text{A} =\frac{1-\cos\theta}{\sin\theta}</math> and <math>\text{B}=\frac{1-\sin\theta}{\cos\theta}</math>, prove that | ||
<math>\frac{\ | <math>\frac{\text{A}^2}{\left( 1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} = \frac{1}{4}</math>. | ||
== Solution == | == Solution == | ||
< | <cmath>\begin{align*} | ||
\frac{\text{A}}{1+\text{A}^2} &= \frac{\frac{1-\cos\theta}{\sin\theta}}{1+\left(\frac{1- \cos\theta}{\sin\theta}\right)^2} \\ | |||
&= \frac{\frac{1-\cos\theta}{\sin\theta}}{\frac{\sin^2\theta+ \cos^2\theta-2\cos\theta+1}{\sin^2\theta}} \\ | |||
&= \frac{\frac{1-\cos\theta}{\sin\theta}}{\frac{2\left(1-\cos\theta\right)}{\sin^2\theta}} \\ | |||
&= \frac{\sin\theta}{2} | |||
\end{align*}</cmath> | |||
Similarly <math>\frac{\ | Similarly <math>\frac{\text{B}}{1+\text{B}^2} = \frac{\cos\theta}{2}</math> | ||
So < | So <cmath>\begin{align*} | ||
\frac{\text{A}^2}{\left(1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} &= \frac{\sin^2\theta}{2^2} + \frac{\cos^2\theta}{2^2} \\ | |||
&= \frac{1}{4} | |||
\end{align*}</cmath> | |||
Revision as of 15:00, 21 May 2009
Problem
If
and
, prove that
.
Solution
Similarly
So