2009 AMC 10A Problems/Problem 5: Difference between revisions
No edit summary |
No edit summary |
||
| Line 7: | Line 7: | ||
Using the standard multiplication algorithm, <math>111111111^2=12345678987654321</math> whose digit sum is <math>81\longrightarrow \fbox{E}</math> | Using the standard multiplication algorithm, <math>111111111^2=12345678987654321</math> whose digit sum is <math>81\longrightarrow \fbox{E}</math> | ||
Or | |||
Add up all the ones(thus deriving the sum of the number) of <math>111,111,111</math> gives us <math>1+1+1+\dots+1 = 9</math> Thus, <math>(9)^2 = 81</math> | |||
==See also== | ==See also== | ||
{{AMC10 box|year=2009|ab=A|num-b=4|num-a=6}} | {{AMC10 box|year=2009|ab=A|num-b=4|num-a=6}} | ||
Revision as of 09:29, 21 March 2009
Problem
What is the sum of the digits of the square of 111,111,111 ?
Solution
Using the standard multiplication algorithm,
whose digit sum is
Or
Add up all the ones(thus deriving the sum of the number) of
gives us
Thus,
See also
| 2009 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||