Mock AIME 3 Pre 2005 Problems/Problem 15: Difference between revisions
No edit summary |
wrote solution |
||
| Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
Let <cmath> x := k^2 + k + 1</cmath> | |||
<cmath>a_k := \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}} \right )</cmath> | |||
Factoring the radicand, we have | |||
<cmath>a_k = \cos^{-1}\left(\frac{x}{\sqrt{x^2+1}} \right )</cmath> | |||
The fraction looks remarkably apt for a trigonometric substitution; namely, define <math>\theta</math> such that <math> x = \tan{\theta}</math>. Then the RHS becomes | |||
<cmath>a_k = \cos^{-1}\left(\frac{\tan{\theta}}{\sec{\theta}} \right ) = \cos^{-1}{(\sin{\theta})}</cmath> | |||
But <cmath>\cos{(\pi/2-\theta)} = \sin{\theta}</cmath> | |||
Therefore, | |||
<cmath> a_k = \pi/2 - \theta = \pi/2 - \tan^{-1}{x} </cmath> | |||
This gives us | |||
<cmath> \tan{a_k} = \tan{(\pi/2 - \tan^{-1}{x})} </cmath> | |||
<cmath> = \cot{(\tan^{-1}{x})} = \dfrac{1}{\tan{(\tan^{-1}{x})} } </cmath> | |||
<cmath> = \dfrac{1}{x} = \dfrac{1}{k^2+k+1} </cmath> | |||
So now | |||
<cmath> a_k = \tan^{-1}{\left( \dfrac{1}{k^2+k+1} \right) } </cmath> | |||
<cmath> = \tan^{-1}{ \left( \dfrac{ (k+1) + (-k) }{ 1 - (-k)(k+1) } \right ) } </cmath> | |||
<cmath> = \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | |||
When we sum <math>a_k</math>, this sum now telescopes: | |||
<cmath>\Omega = \sum_{k=1}^{40} a_k </cmath> | |||
<cmath> = \sum_{k=1}^{40} \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | |||
<cmath> = \tan^{-1}{40} - \tan^{-1}{1} </cmath> | |||
Therefore, the required value | |||
<cmath> \tan{\Omega} = \tan{(\tan^{-1}{40} - \tan^{-1}{1})} </cmath> | |||
<cmath> = \dfrac{ 40 - 1}{1 + 40 \cdot 1 } </cmath> | |||
<cmath> = \dfrac{39}{41} </cmath> | |||
giving us the desired answer of <math>\boxed{80}</math>. | |||
==See also== | ==See also== | ||
Revision as of 00:25, 11 March 2009
Problem
Let
denote the value of the sum
The value of
can be expressed as
, where
and
are relatively prime positive integers. Compute
.
Solution
Let
Factoring the radicand, we have
The fraction looks remarkably apt for a trigonometric substitution; namely, define
such that
. Then the RHS becomes
But
Therefore,
This gives us
So now
When we sum
, this sum now telescopes:
Therefore, the required value
giving us the desired answer of
.