2009 AMC 10B Problems/Problem 20: Difference between revisions
New page: i think its B |
No edit summary |
||
| Line 1: | Line 1: | ||
== Problem == | |||
Triangle <math>ABC</math> has a right angle at <math>B</math>, <math>AB=1</math>, and <math>BC=2</math>. The bisector of <math>\angle BAC</math> meets <math>\overline{BC}</math> at <math>D</math>. What is <math>BD</math>? | |||
<asy> | |||
unitsize(2cm); | |||
defaultpen(linewidth(.8pt)+fontsize(8pt)); | |||
dotfactor=4; | |||
pair A=(0,1), B=(0,0), C=(2,0); | |||
pair D=extension(A,bisectorpoint(B,A,C),B,C); | |||
pair[] ds={A,B,C,D}; | |||
dot(ds); | |||
draw(A--B--C--A--D); | |||
label("$1$",midpoint(A--B),W); | |||
label("$B$",B,SW); | |||
label("$D$",D,S); | |||
label("$C$",C,SE); | |||
label("$A$",A,NW); | |||
draw(rightanglemark(C,B,A,2)); | |||
</asy> | |||
<math> | |||
\text{(A) } \frac {\sqrt3 - 1}{2} | |||
\qquad | |||
\text{(B) } \frac {\sqrt5 - 1}{2} | |||
\qquad | |||
\text{(C) } \frac {\sqrt5 + 1}{2} | |||
\qquad | |||
\text{(D) } \frac {\sqrt6 + \sqrt2}{2} | |||
\qquad | |||
\text{(E) } 2\sqrt 3 - 1 | |||
</math> | |||
== Solution == | |||
Let <math>\angle BAD = \alpha</math>, then <math>\angle BAC = 2\alpha</math>. | |||
Let <math>BD = x</math>, we then have <math>\tan \alpha = \frac x1 = x</math> and <math>\tan (2\alpha) = \frac 21 = 2</math>. | |||
We can now use the formula <math>\tan (2\alpha) = \frac{2 \tan\alpha}{1 - \tan^2 \alpha}</math>. Substituting the values for <math>\tan\alpha</math> and <math>\tan(2\alpha)</math>, we get the equation <math>x^2 + x - 1 = 0</math>. | |||
This quadratic equation has two roots. However, one of them is negative, hence our <math>x</math> is the positive root <math>\boxed{ \frac{\sqrt 5 - 1}2 }</math>. | |||
=== Note === | |||
The formula for <math>\tan (2\alpha)</math> can easily be derived using the better-known formulas <math>\sin (2\alpha)=2\sin\alpha\cos\alpha</math> and <math>\cos (2\alpha)=\cos^2\alpha - \sin^2\alpha</math> as follows: | |||
<cmath> | |||
\tan (2\alpha) = \dfrac{ \sin (2\alpha) }{ \cos (2\alpha) } = \dfrac{ 2\sin\alpha\cos\alpha }{ \cos^2\alpha - \sin^2\alpha } | |||
= \dfrac{ \frac{ 2\sin\alpha\cos\alpha }{ \cos^2\alpha } }{ \frac{ \cos^2\alpha - \sin^2\alpha }{ \cos^2\alpha } } = | |||
\frac{2 \tan\alpha}{1 - \tan^2 \alpha} | |||
</cmath> | |||
== See Also == | |||
{{AMC10 box|year=2009|ab=B|num-b=19|num-a=21}} | |||
Revision as of 19:58, 7 March 2009
Problem
Triangle
has a right angle at
,
, and
. The bisector of
meets
at
. What is
?
Solution
Let
, then
.
Let
, we then have
and
.
We can now use the formula
. Substituting the values for
and
, we get the equation
.
This quadratic equation has two roots. However, one of them is negative, hence our
is the positive root
.
Note
The formula for
can easily be derived using the better-known formulas
and
as follows:
See Also
| 2009 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||