2001 AMC 12 Problems/Problem 9: Difference between revisions
m →Problem |
|||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all | Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all positive real numbers <math>x</math> and <math>y</math>, and <math>f(500) =3</math>. What is <math>f(600)</math>? | ||
<math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math> | <math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math> | ||
Revision as of 00:52, 8 February 2009
Problem
Let
be a function satisfying
for all positive real numbers
and
, and
. What is
?
Solution
, so the answer is
.